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Introduction 

The impact of quantum effects on the optical 

properties of semiconductor quantum dots (QDs) is a 

subject of intensive research in solid-state physics. The 

primary interest in these low-dimensional structures arises 

from their potential applications in optoelectronics. 

Current experimental and theoretical studies have 

extensively explored the energy levels of bound states in 

nanocrystals. However, the influence of phonons in QDs 

requires further investigation. 

Due to their unique properties, QDs can be utilized in 

devices such as night vision equipment, solar cells, field-

effect transistors, and light-emitting devices [1]. Optical 

devices in the mid-infrared range can be realized based on 

interband transitions of electrons (holes). Such transitions 

are actively studied both theoretically and experimentally 

[2-4]. The temperature dependencies of the energy 

difference between energy levels, chemical potential 

levels, and electron distribution among lower sublevels, 

affecting the interband absorption coefficient, have been 

explored in a study [5]. The absorption coefficient of QDs 

in the adiabatic approximation has been determined in 

another study [6], where the expression for the interaction 

of the electron-hole system with longitudinal optical 

phonons of a massive crystal was employed. 

Research indicates that the shape of QDs significantly 

influences the energy spectrum of quasi-particles [7]. 

Experimental works highlight the difference in shape from 

spherical [8-10], which ultimately manifests in the optical 

properties of materials. However, most studies are devoted 

to spherically symmetric QDs due to their simpler 

solution. Linear and nonlinear absorption coefficients in 

QDs of spherical shape have been calculated in a study [2]. 

For nanocrystals in the form of a lens, the absorption 

coefficient of light has been calculated, considering 

impurities within the QDs [3]. Special attention is given to 

the ellipsoidal shape due to its closer correspondence with 

experimental dimensions of QDs [9]. 

The phonon spectrum in spheroidal QDs has been 

investigated in works [11-14]. In studies [11-12], interface 

optical phonons for QDs in the form of an elongated or 

flattened spheroid were examined in the dielectric 

continuum model, demonstrating a pronounced 

dependence of their spectrum on the nanocrystal's 

geometry. The Raman spectrum in QDs with a non-

spherical shape was experimentally studied [13], 

proposing a theoretical model that showed good 

convergence. The polaron spectrum in spheroidal QDs 

was investigated in a study [14], where the phonon 

spectrum was considered using the variational method. It 

was shown that the polaron binding energy decreases with 
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an increase in the nanocrystal's radius, with the main 

contribution coming from LO phonons. 

Analysis indicates the current relevance of studying 

the absorption coefficient in nanocrystals with shapes 

different from spherical, considering the phonon 

spectrum. Therefore, the aim of this work is to determine 

the dependence of the light absorption coefficient on the 

degree of elongation of the spheroid, taking into account 

confined phonons. 

I. Quantum Dot Model 

We consider a spheroidal-shaped quantum dot of a 

wide-bandgap semiconductor embedded in a 

semiconductor matrix with a larger bandgap. For 

calculations, we employ the effective mass 

approximation. It is assumed that the electron and hole of 

the quantum dot are confined within rectangular potential 

wells of finite depth. 

In the case of the heterostructure crystals under 

consideration, we assume that the degenerate point of the 

valence band is the center of the Brillouin zone. We 

examine semiconductor heterostructures with a 

sufficiently large spin-orbit interaction, and thus, we do 

not account for the spin-splitting zone. The energy 

spectrum of electronic states is determined using the 

variational Ritz method. The potential energy is chosen in 

the form of a finite bandgap: 

 

 𝑈 = {
0,

𝑥2+𝑦2

𝑎2 +
𝑧2

𝑏2 < 1,

𝑈0,
𝑥2+𝑦2

𝑎2 +
𝑧2

𝑏2 ≥ 1 ,
  

 

where a and b are the semi-axes of the spheroid, and 𝑈0 is 

the height of the potential barrier for the charge carrier. 

Let's write the Hamiltonian for the electron: 

 

 𝐻̂ = −
ħ2

2
∇

1

𝑚
∇ + 𝑈,  (1.1) 

Where 

 

 𝑚 = {
𝑚1,

𝑥2+𝑦2

𝑎2 +
𝑧2

𝑏2 < 1,

𝑚2,
𝑥2+𝑦2

𝑎2 +
𝑧2

𝑏2 ≥ 1 ,
  

 

is the effective mass of the electron for the corresponding 

region. The Schrödinger equation for a particle with the 

Hamiltonian (1.1) cannot be solved exactly, so we will 

perform a transition to new variables. Namely: 

 

 𝑥̃ = 𝑥,   𝑦̃ = 𝑦,   𝑧̃ =
𝑎

𝑏
𝑧.   

 

For the new coordinates, we express the Hamiltonian 

as:
 

 𝐻̂ = −
ħ2

2𝑚
(

𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑦̃2) −
ħ2

2𝑚

𝑎2

𝑏2

𝜕2

𝜕𝑧2 + 𝑈𝑠𝑝ℎ𝑒𝑟𝑒 = −
ħ2

2𝑚
∇2 + 𝑈𝑠𝑝ℎ𝑒𝑟𝑒 +

ħ2

2𝑚
(1 −

𝑎2

𝑏2)
𝜕2

𝜕𝑧2,   (1.2)

 

where 

 

 𝑈𝑠𝑝ℎ𝑒𝑟𝑒 = {
0, 𝑟̃ < 𝑎,

𝑈0, 𝑟̃ ≥ 𝑎 .
  

 

We will solve the problem with this Hamiltonian 

using the variational Ritz method. We choose the trial 

wave function for the ground state in the form: 

 

 𝛹(𝑟) = {
𝐶𝑗0(𝑟̃𝑘𝑎), 𝑟̃ ≤ 𝑎,

𝐵ℎ0
(1)(𝑟̃𝜒𝛽), 𝑟̃ > 𝑎,

  

 

 𝑘 = √
2𝑚1

ħ2 𝐸,     𝜒 = √
2𝑚2

ħ2
(𝐸 − 𝑈0).  

 

where j0(x) is the spherical Bessel function of the first 

kind, and h0
(1)(x) is the spherical Hankel function of the 

first kind. By utilizing the continuity conditions of the 

wave function and probability flux density at the interface 

of the media, we obtain an expression for determining the 

coefficients C, B and the dependence 𝛽(𝛼) > 0. 

 

 𝐵 =
2𝑒𝛼𝜒𝛽𝜒𝛽 sin[2𝑘𝑎𝛼]

√𝜋𝛼𝜒𝛽+𝜋 sin[2𝑘𝑎𝛼]2−
𝜋𝜒𝛽sin[2𝑘𝑎𝛼]

2𝑘𝑎

,   

 

 𝐶 =
𝑘√2𝜋𝛼

√2𝑘𝑎𝛼+
2𝑘𝛼sin[2𝑘𝑎𝛼]2

𝜒𝛽
−sin[2𝑘𝑎𝛼]

,   

 

𝛽 = −
𝑚1 − 𝑚2 + 𝑘𝑚2𝛼𝛼𝑐𝑡𝑔[𝑘𝛼𝛼]

𝑚1𝛼𝜒
 

 

The dimensions of quantum dots are commensurate 

with the de Broglie wavelength of the charge carriers, so 

quantization of charge carrier motion will occur. For the 

hole, the energy zone will be complex, but in this model 

of a quantum dot, we can distinguish between heavy and 

light hole zones. Calculating the energy of size 

quantization for the ground state of heavy and light holes, 

it is noteworthy that for heavy holes, it will be 

significantly smaller, leading to a splitting at the minimum 

point (Γ-point) of the Brillouin zone between heavy and 

light hole zones. 

Specific calculations were performed for the CdS 

quantum dot in the SiO2 matrix. For this 

nanoheterostructure, the energy of the optical LO-phonon 

is 57.2 meV. The computation of the energy of the lowest 

levels of heavy and light holes indicates that the adiabatic 

approximation can only be applied to quantum dots of 

small volumes (up to 33 nm), where the distance between 

the energy levels of heavy and light holes is substantial. 

In this work, we will consider small-volume quantum 

dots, so when investigating interband transitions, we will 

only take into account the zone of heavy holes. 
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II. Interaction of Polariton Phonons with 

Excitons in a Spheroidal Quantum 

Dot 

The equation of motion for the relative displacement 

vector u  takes the form: 

 

 𝜇𝑢⃗ ̈ = −𝜒𝑢⃗ + 𝑒𝐸⃗ 𝑙𝑜𝑐 .  (2.1) 

 

The relationship between the intensity of the local 

electric field 𝐸⃗ 𝑙𝑜𝑐  and the intensity of the average field 𝐸⃗  

and polarization 𝑃⃗  is given by: 

 

 𝐸⃗ 𝑙𝑜𝑐 = 𝐸⃗ +
4𝜋

3
𝑃⃗ ,  (2.2) 

 

and the polarization vector 

 

 𝑃⃗ = 𝑁(𝑒𝑢⃗ + 𝛼𝐸⃗ 𝑙𝑜𝑐).  (2.3) 

 

In formulas (2.1)-(2.3), the following notations are 

introduced: 

𝜇 =
𝑚+𝑚−

𝑚++𝑚−
 is reduced mass of the ion pair, 𝛼 = 𝛼++𝛼− 

is polarizability of this pair, 𝜒 is elasticity coefficient, N is 

a number of elementary cells per unit volume of the 

quantum dot. 

The polarization field of the quantum dot is 

determined by Maxwell's equations for the medium 

 

 𝐷⃗⃗ = 𝜀(𝜔)𝐸⃗ = 𝐸⃗ + 4𝜋𝑃⃗ ,   

 

 𝐸⃗ =  −∇⃗⃗ Φ,    (2.4) 

 

 𝑑𝑖𝑣𝐷⃗⃗ = 0,   

 

where 𝐷⃗⃗  is induction vector, Φ is potential of the 

polarization field. From equations (2.4), we obtain 

 

 𝜀(𝜔)∆Φ(𝑟 ) = 0,  (2.5) 

 

where  

 

 𝜀(𝜔) = 𝜀∞
𝜔2−𝜔𝐿

2

𝜔2−𝜔𝑇
2 ,  (2.6) 

 

𝜀∞, 𝜔𝐿, 𝜔𝑇 are known high-frequency dielectric 

permittivity, frequencies of longitudinal and transverse 

phonons in a bulk crystal from which the quantum dot is 

formed.  

For confined phonons of the quantum dot: 

 

 𝜀(𝜔) = 0,  a  ∆𝛷(𝑟 ) ≠ 0.  (2.7) 

 

Therefore, as seen from (2.6), the frequency of 

confined oscillations of polarization coincides with the 

frequency of longitudinal optical oscillations 𝜔 = 𝜔𝐿. 

Now let's determine the potential of the polarization 

field 𝛷𝐿(𝑟 ) and the corresponding component of the 

displacement vector 𝑢⃗ 𝐿, caused by confined optical 

phonons. Since 𝜀(𝜔) = 0, then from the first equation 

(2.4) we have: 

 

 𝐸⃗ = −4𝜋𝑃⃗ 𝐿.  (2.8) 

 

where the index L indicates that the longitudinal 

component is considered. Substituting (2.8) into equation 

(2.2), we obtain a relationship between the local field and 

polarization: 

 

 𝐸⃗ 𝑙𝑜𝑐 = −
8𝜋

3
𝑃⃗ 𝐿.  (2.9) 

 

From equations (2.3) and (2.9), we find the 

polarization vector in the form: 

 

 𝑃⃗ 𝐿 =
𝑁𝑒

1+2𝛽
𝑢⃗ 𝐿,   (2.10) 

 

where 𝛽 =
4

3
𝜋𝑁𝑎. Returning again to equations (2.4), 

where we have the equation for the potential 𝛷𝐿(𝑟 ). 

Taking into account the conditions (2.8) and (2.10), we 

have that: 

 

 ∆𝛷𝐿(𝑟 ) =
4𝜋𝑁𝑒

1+2𝛽
𝑢⃗ 𝐿(𝑟 ).   (2.11) 

 

When searching for the potential, it is necessary to 

take into account that the polarization corresponding to 

confined phonons disappears at the surface of the quantum 

dot 

 

 𝛷𝐿(𝑟 )|𝑆 = 0.   (2.12) 

 

Let's consider the case of an elongated spheroid.  

The elongated spheroidal coordinates 𝜉, 𝜂, 𝜙 related 

to the rectangular coordinates of the point 𝑥, 𝑦, 𝑧 by the 

following formulas: 

 

 𝑥 =
𝑑

2
√(𝜉2 − 1)(1 − 𝜂2) cos 𝜙,   

 

 𝑦 =
𝑑

2
√(𝜉2 − 1)(1 − 𝜂2) sin 𝜙,   

 

 𝑧 =
𝑑

2
𝜉𝜂,   

 

𝜉 ∈ [1,∞],  𝜂 ∈ [−1, 1],   𝜙 ∈ [0, 2𝜋],  
𝑑

2
 – focal length. 

The volume element computed using the Lame 

coefficients takes the form 

 

 𝑑𝑉 = 𝑑𝑥𝑑𝑦𝑑𝑧 =
𝑑3

8
(𝜉2 − 𝜂2)𝑑𝜉𝑑𝜂𝑑𝜙.   (2.13) 

 

The Laplace operator in elongated spheroidal 

coordinates is equal to

 

 ∇2= ∆=
4

𝑑2(𝜉2−𝜂2)
{

𝜕

𝜕𝜉
(𝜉2 − 1)

𝜕

𝜕𝜉
+

𝜕

𝜕𝜂
(1 − 𝜂2)

𝜕

𝜕𝜂
+

𝜉2−𝜂2

(𝜉2−1)(1−𝜂2)

𝜕2

𝜕𝜙2}.    (2.14) 
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The Helmholtz equation for the potential is given by: 

 

 (∆ + 𝑘2)𝛷𝐿(𝑟 ) = 0,  (2.15) 

 

where k is wave number. 

If the potential 𝛷𝐿(𝑟 ) is expressed as the product: 

 

𝛷𝐿(𝑟 ) = 𝑅𝑚𝑙(𝜉)𝑆𝑚𝑙(𝜂)𝑒±𝑖𝑚𝜙,   m=0, 1, 2,   (2.16) 

 

then the Helmholtz equation allows for variable separation. Thus, for the functions 𝑅𝑚𝑙(𝜉), 𝑆𝑚𝑙(𝜂) we obtain ordinary 

differential equations: 

 

 
𝜕

𝜕𝜉
[(𝜉2 − 1)

𝜕

𝜕𝜉
𝑅𝑚𝑙(𝜉)] + [−𝜆𝑚𝑙 + 𝑐2(𝜉2 − 1) −

𝑚2

𝜉2−1
𝑅𝑚𝑙(𝜉)] = 0, (2.17) 

 

 
𝜕

𝜕𝜂
[(1 − 𝜂2)

𝜕

𝜕𝜂
𝑆𝑚𝑙(𝜂)] + [𝜆𝑚𝑙 + 𝑐2(1 − 𝜂2) −

𝑚2

1−𝜂2 𝑆𝑚𝑙(𝜂)] = 0,  (2.18)

 

Where 𝑐 =
𝑘𝑑

2
≥ 0, 𝜆𝑚𝑙  is separation constant, m is 

integer. 

The solutions to equations (2.17), (2.18) will be 

denoted as 𝑅𝑚𝑙(𝜉) – elongated radial and 𝑆𝑚𝑙(𝜂) – 

elongated spherical angular functions (ESAF) [15]. 

We return to equation (2.11). The potential 𝛷𝐿(𝑟 ) will 

be sought in the form of an expansion over the complete 

set of ESAF functions: 

 

 𝛷𝐿(𝑟 ) = ∑ 𝐴𝑙𝑚𝑛𝑅𝑚𝑙(𝑐𝑛 , 𝜉)𝑙𝑚𝑛 𝑆𝑚𝑙(𝑐𝑛𝜂)𝑒𝑖𝑚𝜙.  (2.22) 

 

Using (2.22), the displacement in (2.11) can be 

written as: 

 

 𝑢⃗ 𝐿(𝑟 ) = ∑ 𝑈⃗⃗ 𝑙𝑚𝑛𝑙𝑚𝑛 ,   (2.23) 

 

where 

 

 𝑈⃗⃗ 𝑙𝑚𝑛 = (
1+2𝛽

4𝜋𝑛𝑒
)𝐴𝑙𝑚𝑛 ∇⃗⃗ (𝑅𝑚𝑙(𝑐𝑛 , 𝜉)𝑆𝑚𝑙(𝑐𝑛 , 𝜂)𝑒𝑖𝑚𝜙) (2.24) 

 

The coefficients 𝐴𝑙𝑚𝑛  remain unknown. We will 

determine them in the process of the secondary 

quantization of the phonon field. 

To do this, it is necessary to write the equation of 

motion for  𝑢⃗ 𝐿, characterized by the effective mass of ions 

  and the frequency of longitudinal 𝜔𝐿. 

 

 𝑢⃗ ̈𝐿 = −𝜔𝐿
2𝑢⃗ 𝐿.  (2.25) 

 

To obtain equation (2.25), it is necessary to introduce 

the Lagrangian density in the form of 

 

 𝐿 = 𝑇 − 𝑉 −
𝑛𝜇

2
(𝑢⃗ ̇𝐿

2 − 𝜔2𝑢⃗ 𝐿
2).  (2.26) 

 

Then the density of the generalized momentum is 

equal to: 

 

 
𝜕𝐿

𝜕𝑢⃗⃗ ̇𝐿
≡ 𝑝 𝐿 = 𝑁𝜇𝑢⃗ ̇𝐿.  (2.27) 

 

Now we can write the Hamiltonian function for 

confined polar phonon oscillations of the quantum dot: 

 

 𝐻 = ∫ (
𝑝𝐿

2

2𝑛𝜇
+

1

2
𝑁𝜇𝜔𝐿

2𝑢𝐿
2) 𝑑𝑉

𝑉
.  (2.28) 

 

Let's proceed to the operators of physical quantities, 

following the principles of quantum mechanics: 

 

 𝑝 𝐿 → 𝑝 ̂𝐿 ,   𝑢⃗ 𝐿 → 𝑢⃗ ̂𝐿,  (2.29) 

 

Similarly to classical relationships 

 

 𝑝 ̂𝐿 = ∑ 𝑃⃗ ̂𝑙𝑚𝑛𝑙𝑚𝑛 , 𝑢⃗ ̂𝐿 = ∑ 𝑈⃗⃗ ̂𝑙𝑚𝑛𝑙𝑚𝑛 ,   (2.30) 

 

We need to transition from canonical variables to 

operators of second quantization 𝑏𝑙𝑚𝑛 , 𝑏𝑙𝑚𝑛
+ , that would 

satisfy bosonic commutation relations: 

 

 [𝑏̂𝑙𝑚𝑛 , 𝑏̂𝑙𝑚′𝑛′
+ ] = 𝛿𝑙𝑙 ∙ 𝛿𝑚𝑚 ∙ 𝛿𝑛𝑛.  (2.31) 

 

Let's express the operators in the form

 

 𝑈⃗⃗ ̂𝑙𝑚𝑛 = 𝐴𝑙𝑚𝑛√
ħ

2𝑁𝜇𝜔𝐿
 ∇⃗⃗ [𝑅𝑚𝑙(𝑐𝑛, 𝜉)𝑆𝑚𝑙(𝑐𝑛 , 𝜂)𝑒𝑖𝑚𝜙](𝑏𝑙𝑚𝑛

+ + 𝑏𝑙𝑚𝑛),  (2.32) 

 

 𝑃⃗ ̂𝑙𝑚𝑛 = 𝐴𝑙𝑚𝑛√
ħ𝑁𝜇𝜔𝐿

2
 ∇⃗⃗ [𝑅𝑚𝑙(𝑐𝑛, 𝜉)𝑆𝑚𝑙(𝑐𝑛, 𝜂)𝑒−𝑖𝑚𝜙](𝑏𝑙𝑚𝑛

+ − 𝑏𝑙𝑚𝑛).  (2.33) 

 

The Hamiltonian of polarization oscillations 
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𝐻̂𝐿 =
1

2
∫𝑑𝑉 (

𝑃⃗ ̂𝐿
+𝑃⃗ ̂𝐿

𝑁𝜇
+ 𝑁𝜇𝜔𝐿

2𝑈⃗⃗ ̂𝐿
+𝑈⃗⃗ ̂𝐿) =

∑
ħ𝜔𝐿

4
𝑙𝑚𝑛

𝑙′𝑚′𝑛′
𝐴𝑙𝑚𝑛

∗ 𝐴𝑙′𝑚′𝑛′   ∫ ∇[𝑅𝑚𝑙(𝑐𝑛 , 𝜉)𝑆𝑚𝑙(𝑐𝑛, 𝜂)𝑒−𝑖𝑚𝜙] ×∇[𝑅𝑚′𝑙′(𝑐𝑛′ , 𝜉)𝑆𝑚′𝑙′(𝑐𝑛′ , 𝜂)𝑒𝑖𝑚′𝜙]{(𝑏𝑙𝑚𝑛 − 𝑏𝑙𝑚𝑛
+ ) ×

(𝑏𝑙′𝑚′𝑛′
+ − 𝑏𝑙′𝑚′𝑛;) + (𝑏𝑙𝑚𝑛

+ + 𝑏𝑙𝑚𝑛) × (𝑏𝑙′𝑚′𝑛; + 𝑏𝑙′𝑚′𝑛′
+ )}𝑑𝑉 =

∑ 𝐴𝑙𝑚𝑛
∗ 𝐴𝑙′𝑚′𝑛′𝑙𝑚𝑛

𝑙′𝑚′𝑛′
∫∇[𝑅𝑚𝑙(𝑐𝑛, 𝜉)𝑆𝑚𝑙(𝑐𝑛, 𝜂)𝑒−𝑖𝑚𝜙] ×∇[𝑅𝑚′𝑙′(𝑐𝑛′ , 𝜉)𝑆𝑚′𝑙′(𝑐𝑛′ , 𝜂)𝑒𝑖𝑚′𝜙]𝑑𝑉 × [ħ𝜔 (𝑏𝑙𝑚𝑛

+ 𝑏𝑙𝑚𝑛 +
1

2
)].  

(2.34) 

 

The volume integral over the quantum dot is calculated using Green's theorem. Taking into account that the potential 

on the surface is zero (2.12), therefore, according to (2.22) 𝑅𝑚𝑙(𝑐𝑛 , 𝜉0) = 0, because 𝜉 = 𝜉0 determines the surface of the 

spheroid. So, 

 

∫ 𝑑𝑉∇
𝑉

[𝑅𝑚𝑙(𝑐𝑛 , 𝜉)𝑆𝑚𝑙(𝑐𝑛, 𝜂)𝑒−𝑖𝑚𝜙]∇[𝑅𝑚′𝑙′(𝑐𝑛′ , 𝜉)𝑆𝑚′𝑙′(𝑐𝑛′ , 𝜂)𝑒𝑖𝑚′𝜙] =

−∫ 𝑑𝑉(𝑅𝑚𝑙(𝑐𝑛, 𝜉)𝑆𝑚𝑙(𝑐𝑛, 𝜂)𝑒−𝑖𝑚𝜙)∇2(𝑅𝑚′𝑙′(𝑐𝑛′ , 𝜉)𝑆𝑚′𝑙′(𝑐𝑛′ , 𝜂)𝑒𝑖𝑚′𝜙)
𝑉

.  (2.35) 

 

Let's recall that  

 

 𝑑𝑉 =
𝑑3

8
(𝜉2 − 𝜂2) 𝑑𝜉𝑑𝜂𝑑𝜙,  (2.36) 

 

 ∇2=
4

𝑑2(𝜉2−𝜂2)
{

𝜕

𝜕𝜉
(𝜉2 − 1)

𝜕

𝜕𝜉
+

𝜕

𝜕𝜂
(1 − 𝜂2)

𝜕

𝜕𝜂
+

𝜉2−𝜂2

(𝜉2−1)(1−𝜂2) 𝜕𝜙2}.  (2.37) 

 

Let's compute the integral (2.35). Taking into account (2.36) and (2.37), we obtain: 

 

𝐼 = −
𝑑

2
∫𝑑𝜉𝑑𝜂𝑑𝜙(𝑅𝑚𝑙(𝑐𝑛 , 𝜉)𝑆𝑚𝑙(𝑐𝑛 , 𝜂)𝑒−𝑖𝑚𝜙) × {

𝜕

𝜕𝜉
(𝜉2 − 1)

𝜕

𝜕𝜉
+

𝜕

𝜕𝜂
(1 − 𝜂2)

𝜕

𝜕𝜂
+

𝜉2−𝜂2

(𝜉2−1)(1−𝜂2) 𝜕𝜙2} ×

(𝑅𝑚′𝑙′(𝑐𝑛′ , 𝜉)𝑆𝑚′𝑙′(𝑐𝑛′ , 𝜂)𝑒𝑖𝑚′𝜙) = −
𝑑

2
∫𝑑𝜉𝑑𝜂𝑑𝜙 𝑅𝑚𝑙(𝑐𝑛 , 𝜉)𝑆𝑚𝑙(𝑐𝑛, 𝜂)𝑒−𝑖𝑚𝜙 × {

𝜕

𝜕𝜉
(𝜉2 − 1)

𝜕

𝜕𝜉
+

𝜕

𝜕𝜂
(1 − 𝜂2)

𝜕

𝜕𝜂
+

𝜉2−𝜂2

(𝜉2−1)(1−𝜂2) 𝜕𝜙2} × 𝑅𝑚′𝑙′(𝑐𝑛′ , 𝜉)𝑆𝑚′𝑙′(𝑐𝑛′ , 𝜂)𝑒𝑖𝑚′𝜙. 

 

Taking into account that 

 

∫ 𝑒𝑖(𝑚′−𝑚)𝜑 = 2𝜋𝛿𝑚𝑚′
2𝜋

0
, 

 

Then, the reduced integral I reduces to the following: 

 

𝐼 = −𝜋𝑑𝛿𝑚𝑚′ ∫𝑑 𝜉𝑑𝜂𝑅𝑚𝑙(𝑐𝑛 , 𝜉)𝑆𝑚𝑙(𝑐𝑛 , 𝜂) × 

 × {
𝜕

𝜕𝜉
(𝜉2 − 1)

𝜕

𝜕𝜉
+

𝜕

𝜕𝜂
(1 − 𝜂2)

𝜕

𝜕𝜂
−

𝑚2

𝜉2−1
−

𝑚2

1−𝜂2} 𝑅𝑚′𝑙′(𝑐𝑛′ , 𝜉)𝑆𝑚′𝑙′(𝑐𝑛′ , 𝜂).  (2.38) 

 

Now, taking into account equations (2.17) and (2.18), we have 

 

𝐼 = −𝜋𝑑𝛿𝑚𝑚′ ∫𝑑 𝜉𝑑𝜂𝑅𝑚𝑙(𝑐𝑛 , 𝜉)𝑆𝑚𝑙(𝑐𝑛, 𝜂){(𝜆 − 𝑐2(𝜉2 − 1)) + (−𝜆 − 𝑐2(1 − 𝜂2))} × 𝑅𝑚′𝑙′(𝑐𝑛′ , 𝜉)𝑆𝑚′𝑙′(𝑐𝑛′ , 𝜂) =

𝜋𝑑𝑐𝑛
2𝛿𝑚𝑚′𝛿𝑙𝑙′𝛿𝑛𝑛′ {∫ 𝑑𝜉𝑅𝑚𝑙

2 (𝑐𝑛 , 𝜉)
𝜉0

1
𝜉2 − ∫ 𝑑𝜂𝑆𝑚𝑙

2 (𝑐𝑛 , 𝜂)𝜂21

−1
}.  (2.39) 

 

𝐻̂ = ∑ ħ𝜔𝐿𝑙𝑚𝑛 (𝑏𝑙𝑚𝑛
+ 𝑏𝑙′𝑚′𝑛; +

1

2
) 𝛿𝑚𝑚′𝛿𝑙𝑙′𝛿𝑛𝑛′|𝐴𝑙𝑚𝑛|

2𝜋𝑑𝑐𝑛
2 [∫ 𝑑𝜉𝑅𝑚𝑙

2 (𝑐𝑛 , 𝜉)
𝜉0

1
𝜉2 − ∫ 𝑑𝜂𝑆𝑚𝑙

2 (𝑐𝑛 , 𝜂)𝜂21

−1
] =

∑ ħ𝜔𝐿𝑙𝑚𝑛 (𝑏𝑙𝑚𝑛
+ 𝑏𝑙𝑚𝑛 +

1

2
),   (2.40) 

 

if 

 𝐴𝑙𝑚𝑛 = {𝜋𝑑𝑐𝑛
2 [∫ 𝑑𝜉𝑅𝑚𝑙

2 (𝑐𝑛 , 𝜉)
𝜉0

1
𝜉2 − ∫ 𝑑𝜂𝑆𝑚𝑙

2 (𝑐𝑛, 𝜂)𝜂21

−1
]}

−
1

2
=

1

√𝜋𝑑
∙

1

𝐶𝑛
∙

1

√∫ 𝑑𝜉𝑅𝑚𝑙
2 (𝑐𝑛,𝜉)

𝜉0
1 𝜉2−∫ 𝑑𝜂𝑆𝑚𝑙

2 (𝑐𝑛,𝜂)𝜂21
−1

  (2.41) 

 

Substituting ˆ
lmn

U  the formula (2.32) into the formula (2.11), assuming that the potential 𝛷 is an operator. Therefore,  

 𝛷̂ =
4𝜋𝑛𝑒

1+2𝛽
𝐴𝑙𝑚𝑛√

ħ

2𝑛𝜇𝜔𝐿
𝑅𝑚𝑙(𝑐𝑛 , 𝜉)𝑆𝑚𝑙(𝑐𝑛 , 𝜂)𝑒𝑖𝑚𝜙(𝑏𝑙𝑚𝑛

+ + 𝑏𝑙𝑚𝑛).  (2.42) 

Taking into account that 



V.B. Holskyi, R.Ya. Leshko, V.B. Brytan, Y.O. Uhryn, V.R. Karpiy 

 240 

 
1

1+2𝛽
√

4𝜋𝑛𝑒2

𝜇𝜔𝐿
2 = √

1

𝜀∞
−

1

𝜀0
 .  (2.43) 

Then the potential operator 

 

𝛷̂ = √2𝜋ħ𝜔𝐿√
1

𝜀∞

−
1

𝜀0

∙
1

√𝜋𝑑

1

𝐶𝑛

[
∫ 𝑑𝜉𝑅𝑚𝑙

2 (𝑐𝑛 , 𝜉)
𝜉0

1
𝜉2

∫ 𝑑𝜉𝑅𝑚𝑙
2 (𝑐𝑛 , 𝜉)

𝜉0

1

−
∫ 𝑑𝜂𝑆𝑚𝑙

2 (𝑐𝑛, 𝜂)𝜂21

−1

∫ 𝑑𝜂𝑆𝑚𝑙
2 (𝑐𝑛 , 𝜂)

1

−1

]

1

2

× 

 ×
𝑅𝑚𝑙(𝑐𝑛,𝜉)

√∫ 𝑑𝜉𝑅𝑚𝑙
2 (𝑐𝑛,𝜉)

𝜉0
1

−
𝑆𝑚𝑙(𝑐𝑛,𝜂)

√∫ 𝑑𝜂𝑆𝑚𝑙
2 (𝑐𝑛,𝜂)

1
−1

𝑒𝑖𝑚𝜙(𝑏𝑙𝑚𝑛
+ + 𝑏𝑙𝑚𝑛).  (2.44) 

 

And the electron-phonon interaction operator will take the form: 

 

 𝐻̂𝑖𝑛𝑡 = −𝑒𝛷̂ = −𝑒√
2ħ𝜔𝐿

𝑑
√

1

𝜀∞
−

1

𝜀0
∙

1

𝐶𝑛
[
∫ 𝑑𝜉𝑅𝑚𝑙

2 (𝑐𝑛,𝜉)
𝜉0
1 𝜉2

∫ 𝑑𝜉𝑅𝑚𝑙
2 (𝑐𝑛,𝜉)

𝜉0
1

−
∫ 𝑑𝜂𝑆𝑚𝑙

2 (𝑐𝑛,𝜂)𝜂21
−1

∫ 𝑑𝜂𝑆𝑚𝑙
2 (𝑐𝑛,𝜂)

1
−1

]

1

2

× 

 ×
𝑅𝑚𝑙(𝑐𝑛,𝜉)

√∫ 𝑑𝜉𝑅𝑚𝑙
2 (𝑐𝑛,𝜉)

𝜉0
1

−
𝑆𝑚𝑙(𝑐𝑛,𝜂)

√∫ 𝑑𝜂𝑆𝑚𝑙
2 (𝑐𝑛,𝜂)

1
−1

𝑒𝑖𝑚𝜙(𝑏𝑙𝑚𝑛
+ + 𝑏𝑙𝑚𝑛). (2.45) 

 

Let's write down the exciton-phonon interaction function, taking into account spontaneous phonon emission [16], we 

get: 

 

𝛷̂0(𝑚, 𝑙, 𝑛) = ∫ 𝑑𝜉𝑒
𝜉0

1
∫ 𝑑𝜂𝑒

1

−1
∫ 𝑑𝜙𝑒𝜑𝑒

∗2𝜋

0
(𝜉𝑒 , 𝜂𝑒 , 𝜙𝑒) ∫ 𝑑𝜉ℎ

𝜉0

1
∫ 𝑑𝜂ℎ

1

−1
∫ 𝑑𝜙ℎ𝜑ℎ

∗2𝜋

0
(𝜉ℎ , 𝜂ℎ, 𝜙ℎ)(𝑒𝛷̂ℎ −

𝑒𝛷̂𝑒)𝜑𝑒(𝜉𝑒 , 𝜂𝑒, 𝜙𝑒) 𝜑ℎ(𝜉ℎ, 𝜂ℎ, 𝜙ℎ) =

∫ 𝑑𝜉𝑒
𝜉0

1
∫ 𝑑𝜂𝑒

1

−1
∫ 𝑑𝜙𝑒𝜑𝑒

22𝜋

0
(𝜉𝑒 , 𝜂𝑒, 𝜙𝑒) ∫ 𝑑𝜉ℎ

𝜉0

1
∫ 𝑑𝜂ℎ

1

−1
∫ 𝑑𝜙ℎ𝜑ℎ

22𝜋

0
(𝜉ℎ , 𝜂ℎ, 𝜙ℎ)(𝑒

𝑖𝑚𝜙ℎ𝐹ℎ − 𝑒𝑖𝑚𝜙𝑒𝐹𝑒),  (2.46) 

 

where 𝜑𝑒(𝜉𝑒 , 𝜂𝑒 , 𝜙𝑒), 𝜑ℎ(𝜉ℎ, 𝜂ℎ, 𝜙ℎ) the wave functions of the electron and hole, respectively.  

 

 𝐹 = 𝑒√
2ħ𝜔𝐿

𝑑
 √

1

𝜀∞
−

1

𝜀0
∙

1

𝐶𝑛
[
∫ 𝑑𝜉𝑅𝑚𝑙

2 (𝑐𝑛,𝜉)
𝜉0
1 𝜉2

∫ 𝑑𝜉𝑅𝑚𝑙
2 (𝑐𝑛,𝜉)

𝜉0
1

−
∫ 𝑑𝜂𝑆𝑚𝑙

2 (𝑐𝑛,𝜂)𝜂21
−1

∫ 𝑑𝜂𝑆𝑚𝑙
2 (𝑐𝑛,𝜂)

1
−1

]

1

2

×
𝑅𝑚𝑙(𝑐𝑛,𝜉)

√∫ 𝑑𝜉𝑅𝑚𝑙
2 (𝑐𝑛,𝜉)

𝜉0
1

𝑆𝑚𝑙(𝑐𝑛,𝜂)

√∫ 𝑑𝜂𝑆𝑚𝑙
2 (𝑐𝑛,𝜂)

1
−1

 .  (2.47) 

 

Taking into account that  𝑚𝑒 = 𝑚ℎ = 0, 𝑒𝑖𝑚𝜙ℎ = 𝑒𝑖𝑚𝜙𝑒 = 1 i 𝜑𝑒(𝜉𝑒 , 𝜂𝑒 , 𝜙𝑒) = 𝜑𝑒(𝜉𝑒 , 𝜂𝑒),  

𝜑ℎ(𝜉ℎ , 𝜂ℎ, 𝜙ℎ) = 𝜑ℎ(𝜉ℎ , 𝜂ℎ), simplify (2.46) as follows: 

 

𝛷̂0(𝑚, 𝑙, 𝑛) = ∫ 𝑑𝜉𝑒
𝜉0

1
∫ 𝑑𝜂𝑒

1

−1
∫ 𝑑𝜙𝑒𝜑𝑒

22𝜋

0
(𝜉𝑒 , 𝜂𝑒) ∫ 𝑑𝜉ℎ

𝜉0

1
∫ 𝑑𝜂ℎ

1

−1
∫ 𝑑𝜙ℎ

2𝜋

0
𝑒𝑖𝑚𝜙ℎ𝜑ℎ

2(𝜉ℎ , 𝜂ℎ)𝐹ℎ −

∫ 𝑑𝜉𝑒
𝜉0

1
∫ 𝑑𝜂𝑒

1

−1
∫ 𝑑𝜙𝑒𝑒

𝑖𝑚𝜙𝑒𝜑𝑒
22𝜋

0
(𝜉𝑒 , 𝜂𝑒) ∫ 𝑑𝜉ℎ

𝜉0

1
∫ 𝑑𝜂ℎ

1

−1
∫ 𝑑𝜙ℎ𝜑ℎ

22𝜋

0
(𝜉ℎ, 𝜂ℎ)𝐹𝑒 =

(2𝜋)2 ∫ 𝑑𝜉𝑒
𝜉0

1
∫ 𝑑𝜂𝑒𝜑𝑒

21

−1
(𝜉𝑒 , 𝜂𝑒) ∫ 𝑑𝜉ℎ

𝜉0

1
∫ 𝑑𝜂ℎ𝜑ℎ

21

−1
(𝜉ℎ, 𝜂ℎ)𝐹ℎ =

(2𝜋)2 ∫ 𝑑𝜉𝑒
𝜉0

1
∫ 𝑑𝜂𝑒𝜑𝑒

21

−1
(𝜉𝑒 , 𝜂𝑒) ∫ 𝑑𝜉ℎ

𝜉0

1
∫ 𝑑𝜂ℎ𝜑ℎ

21

−1
(𝜉ℎ, 𝜂ℎ)𝐹𝑒   (2.48) 

 

The coefficient of interband light absorption is found using the formula: 

 

 𝛼(𝜔) =
4𝜋2𝑒2

𝑛𝑐𝑚0
2ħ𝜔𝑉0

𝐷𝑒𝑥  Im[𝐺𝑛(𝜔̃)]  (2.49) 

 

where 𝐺𝑛(𝜔̃) = −
𝑖

ħ
∙ 𝑒−𝑔0 ∙ 𝑔𝑛(𝜔) is Green's function, 𝑔𝑛(𝜔) = ∫ 𝑒−𝜂𝑡 ∙ 𝑒𝑖(𝜔−𝜔𝑛)𝑡 ∙

∞

0

𝑒∑ |Ʌ𝑚𝑛|2[(1+𝑉𝑚)𝑒−𝑖𝜔𝑓𝑚𝑡+𝑉𝑚𝑒𝑖𝜔𝑓𝑚𝑡]𝑀
𝑚 𝑑, 𝑔0 = ∑ |Ʌ𝑚0|

2(2𝑉̃𝑚 + 1)𝑀
𝑚 , 𝑉̃𝑙 =

1

𝑒

Ω𝑙

𝑘𝑏𝑇

,  

Ʌ𝑚𝑛 = ∑
𝛷̃0(𝑚,𝑙,𝑛)

Ω𝐿
𝑙 , 𝑚, 𝑙, 𝑛 are phonon quantum numbers, Ω𝐿 = ħ𝜔𝐿 is the energy of confined phonons.

 

III. Interband Light Absorption in 

Heterostructures  

We consider the interband light absorption in a 

semiconductor quasi-zero-dimensional nanoheterosystem 

based on the dipole approximation, as the electromagnetic 

wave's wavelength is significantly larger than the quantum 

dot dimensions. 

In practice, ensembles of quantum dots (QDs) are 

often obtained within crystalline or polymeric matrices or 

in colloidal solutions. Regardless of the growth method 

used, the set of QDs is always characterized by size 

dispersion. It is assumed that the distribution of QDs by 
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size can be approximated by a Gaussian function. Using 

formula (2.49), dependencies of the coefficient of 

electromagnetic wave absorption on the incident quantum 

energy are plotted for an average QD volume of 14 nm³ 

and a size dispersion of 1%. For each dependency, we 

denote the coefficient K, representing the ratio of the 

major (b) to minor (a) axes of the ellipsoid. 

Figure 1 shows the absorption coefficient obtained for 

a quantum dot of an elongated spheroid shape. In the 

energy transition range, there are four absorption peaks: 

two of them are due to charge carrier transitions between 

optically active levels in the quantum dot (phonon-free 

bands), and the other two arise from electron-phonon 

interactions and are phonon replicas. In this figure, the 

graphs of the light interband absorption coefficient as a 

function of the frequency of the incident electromagnetic 

wave for both the interaction of excitons with confined 

phonons and the bulk model practically coincide. This 

occurs due to the relationship of the ellipsoid semi-axes 

K = 1.01, which means that 𝑏 ≈ 𝑎. The calculations show 

that the magnitude of the exciton-phonon interaction in the 

model of such a quasi-sphere is almost independent of the 

choice of phonons involved in the interband light 

absorption. 

 

 
Fig. 1. Interband absorption coefficients considering 

confined phonons (solid curve), T = 4.2 K, K = 1.01. The 

dashed curve corresponds to 𝛼 = 𝛼(𝜔) absorption 

considering phonons of the bulk crystal. 

 

When studying the absorption coefficients of 

interband optical transitions, an important factor is the 

temperature at which the transition occurs. In Fig. 2, the 

light absorption coefficient for interband transitions of 

charge carriers is shown for the same models of a quantum 

dot in the form of an elongated ellipsoid of revolution at 

room temperature (T = 300 K). Comparing the shape of 

the absorption coefficient frequency dependence graph 

with the graph in Fig. 1 (T = 4.2 K), we note the 

appearance of additional phonon replicas to the left of the 

non-phonon maxima of the absorption coefficient. The 

absolute values of the absorption coefficient maxima for 

all transitions have slightly decreased.  

Let's analyze Fig. 3 in more detail. The considered QD 

model is a spheroid with an aspect ratio of 0.5, meaning 

𝑏 = 1.5𝑎. We observe that for both cases (considering 

confined phonons as well as phonons of the bulk crystal), 

light absorption occurs at approximately the same 

energies. However, compared to the "quasisphere" case 

(Figures 1 and 2), the overall energy at which light  

 
Fig. 2. Interband absorption coefficients considering 

confined phonons (solid curve), Т = 300 К, K = 1.01. The 

dashed curve corresponds to 𝛼 = 𝛼(𝜔) absorption 

considering phonons of the bulk crystal. 

 

Fig. 3. Interband absorption coefficients taking into 

account confined phonons (solid curve), Т = 4.2 К, 

K = 1.5. The dashed curve corresponds to 𝛼 = 𝛼(𝜔) 

absorption considering phonons of the bulk crystal. 

 

absorption occurs decreases - the absorption wavelength 

shifts towards the red part of the spectrum. It is evident that 

the absorption peaks considering confined phonons are 

shifted towards higher energies compared to the case 

considering bulk phonons. The absolute values of the 

absorption coefficient maxima, which are caused by phonon 

replicas, are higher for the model with bulk phonons, except 

for light absorption during the charge transition between the 

lowest (ground) states of the electron and hole, where the 

maximum of the interband light absorption coefficient with 

confined phonons is higher. 

When comparing the contribution of confined phonon 

polarizations with bulk phonons to the interband charge 

transition process under the influence of external 

electromagnetic waves, we observe that the difference in 

absolute values of absorption peaks in Fig. 4 increases for all 

absorption maxima due to the temperature rise to 300 K. 

Comparing the transitions driven by exciton-phonon 

interaction, namely interband optical transitions with 

confined phonons and bulk phonons, we observe that the 

phonon replicas play a more significant role in the maxima 

of light optical absorption, especially for the case of bulk 

phonons, across the entire absorption range at the 

considered temperatures. 

Examining Figures 5-6, which depict absorption 

spectra for quantum dots in the form of an elongated 

spheroid with an aspect ratio of K=2 (𝑏 = 2𝑎), we observe 



V.B. Holskyi, R.Ya. Leshko, V.B. Brytan, Y.O. Uhryn, V.R. Karpiy 

 242 

 

Fig. 4. Interband absorption coefficients taking into 

account confined phonons (solid curve), Т = 300 К, 

K = 1.5. The dashed curve corresponds to 𝛼 = 𝛼(𝜔) 

absorption considering phonons of the bulk crystal. 

 
Fig. 5. Interband absorption coefficients taking into 

account confined phonons (solid curve), Т = 4.2 К, K = 2. 

The dashed curve corresponds to 𝛼 = 𝛼(𝜔) absorption 

considering phonons of the bulk crystal. 

 
Fig. 6. Interband absorption coefficients taking into 

account confined phonons (solid curve), Т = 300 К, K = 2. 

The dashed curve corresponds to 𝛼 = 𝛼(𝜔) absorption 

considering phonons of the bulk crystal. 

 

an increase in the absolute values of the absorption 

coefficient maxima between the two lowest optically 

active electron and hole levels (phonon-free absorption 

band). This difference from models with a smaller aspect 

ratio is explained by a reduction in the probability of 

interband charge carrier transitions due to the interaction 

with phonons resulting from light absorption. 

Analyzing the plots of the dependence of the 

interband light absorption coefficient on the frequency of 

the incident electromagnetic wave in Figures 5-6, we 

observe even more "smoothing" of phonon replicas across 

the entire absorption range when considering polariton-

confined phonons. It is noteworthy that when considering 

exciton-phonon interaction in the bulk model, the absolute 

values of the absorption maxima of phonon replicas are 

significantly higher than the peak values calculated with 

confined phonons in the quantum dot. 

Further increasing the aspect ratio of the quantum dot 

in the form of an elongated spheroid, in our opinion, will 

simultaneously result in a narrowing of the region where 

interband charge carrier transitions occur, accompanied by 

a reduction in the distances between levels. 

It is visually evident that at large aspect ratios of the 

ellipsoidal-shaped quantum dot CdS/SiO2 the interaction 

of charge carriers with confined phonons diminishes, and 

the non-phonon absorption bands will have a much higher 

probability of interband transitions for the charge carriers 

than the phonon replicas. 

Conclusions  

In this study, we have investigated the interband 

absorption spectrum of CdS quantum dots with a spherical 

shape embedded in a SiO2 matrix, taking into account the 

interaction of electron-hole pairs with polariton phonons. 

We analyzed the differences between the volume Fröhlich 

model (phonons of a bulk crystal) and the interaction of 

the exciton-phonon system, considering confined 

phonons. Absorption coefficients related to charge carrier 

transitions between the lowest excitonic optically active 

levels in quantum dots under the influence of linearly 

polarized light were calculated. We focused on quantum 

dot volumes where the energy levels of electrons and holes 

are sufficiently separated. Thus, considering the possible 

dispersion of quantum dots in size within the matrix and 

accounting for different aspect ratios for quantum dots 

with an elongated spheroid shape, the identified levels can 

be distinguished in the analysis of the frequency 

dependence of the interband absorption coefficient. The 

calculations demonstrate that both the peak magnitudes 

and the energies of the interband absorption coefficient 

peaks depend not only on the volume and shape of 

quantum dots but also on the choice of the phonon model. 

For this heterostructure, we have shown the similarity of 

absorption spectra when considering both bulk crystal 

phonons and confined phonons. 
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Вплив поляризаційних фононів на міжзонне поглинання світла у 

сфероїдальній квантовій точці гетеросиситеми CdS/SiO2 

Дрогобицький державний педагогічний університет імені Івана Франка,  

факультет фізики, математики, економіки та інноваційних технологій, кафедра фізики та інформаційних систем, 

м. Дрогобич, Україна, hol.wit@gmail.com  

Досліджено вплив обмежених фононів на коефіцієнт міжзонного поглинання поляризованого світла 

від його частоти. Зроблено порівняння отриманих результатів із відповідними при врахуванні 

поляризаційних фононів масивного кристалу. Встановлено залежність міжзонного поглинання світла від 

співвідношення півосей еліпсоїда. Обчислення проводились для різних температур і радіусів квантової 

точки гетероструктури CdS/SiO2 форми витягнутого сфероїда.  

Ключові слова: фактор Хуанга-Ріса, оптичні переходи, фонони, коефіцієнт поглинання. 
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