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Introduction

The impact of quantum effects on the optical
properties of semiconductor quantum dots (QDs) is a
subject of intensive research in solid-state physics. The
primary interest in these low-dimensional structures arises
from their potential applications in optoelectronics.
Current experimental and theoretical studies have
extensively explored the energy levels of bound states in
nanocrystals. However, the influence of phonons in QDs
requires further investigation.

Due to their unique properties, QDs can be utilized in
devices such as night vision equipment, solar cells, field-
effect transistors, and light-emitting devices [1]. Optical
devices in the mid-infrared range can be realized based on
interband transitions of electrons (holes). Such transitions
are actively studied both theoretically and experimentally
[2-4]. The temperature dependencies of the energy
difference between energy levels, chemical potential
levels, and electron distribution among lower sublevels,
affecting the interband absorption coefficient, have been
explored in a study [5]. The absorption coefficient of QDs
in the adiabatic approximation has been determined in
another study [6], where the expression for the interaction
of the electron-hole system with longitudinal optical
phonons of a massive crystal was employed.
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Research indicates that the shape of QDs significantly
influences the energy spectrum of quasi-particles [7].
Experimental works highlight the difference in shape from
spherical [8-10], which ultimately manifests in the optical
properties of materials. However, most studies are devoted
to spherically symmetric QDs due to their simpler
solution. Linear and nonlinear absorption coefficients in
QDs of spherical shape have been calculated in a study [2].
For nanocrystals in the form of a lens, the absorption
coefficient of light has been calculated, considering
impurities within the QDs [3]. Special attention is given to
the ellipsoidal shape due to its closer correspondence with
experimental dimensions of QDs [9].

The phonon spectrum in spheroidal QDs has been
investigated in works [11-14]. In studies [11-12], interface
optical phonons for QDs in the form of an elongated or
flattened spheroid were examined in the dielectric
continuum model, demonstrating a pronounced
dependence of their spectrum on the nanocrystal's
geometry. The Raman spectrum in QDs with a non-
spherical shape was experimentally studied [13],
proposing a theoretical model that showed good
convergence. The polaron spectrum in spheroidal QDs
was investigated in a study [14], where the phonon
spectrum was considered using the variational method. It
was shown that the polaron binding energy decreases with
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an increase in the nanocrystal's radius, with the main
contribution coming from LO phonons.

Analysis indicates the current relevance of studying
the absorption coefficient in nanocrystals with shapes
different from spherical, considering the phonon
spectrum. Therefore, the aim of this work is to determine
the dependence of the light absorption coefficient on the
degree of elongation of the spheroid, taking into account
confined phonons.

I. Quantum Dot Model

We consider a spheroidal-shaped quantum dot of a
wide-bandgap  semiconductor embedded in a
semiconductor matrix with a larger bandgap. For
calculations, we employ the effective mass
approximation. It is assumed that the electron and hole of
the quantum dot are confined within rectangular potential
wells of finite depth.

In the case of the heterostructure crystals under
consideration, we assume that the degenerate point of the
valence band is the center of the Brillouin zone. We
examine semiconductor heterostructures with a
sufficiently large spin-orbit interaction, and thus, we do
not account for the spin-splitting zone. The energy
spectrum of electronic states is determined using the
variational Ritz method. The potential energy is chosen in

h? a2 h? a? 92

—~ 02
H= _E(ﬁJrﬁ) ~ampiazz T Usphere =
where
(0, F<a,
Usphere - UO' F>a.

We will solve the problem with this Hamiltonian
using the variational Ritz method. We choose the trial
wave function for the ground state in the form:

Cjo(tka), ¥ < a,
Y(r) = D) /x .
Bhy " (FxB), 7> a,

2 2
k= /%E x= /%(E—Uo).

where jo(x) is the spherical Bessel function of the first
kind, and ho¥(x) is the spherical Hankel function of the
first kind. By utilizing the continuity conditions of the
wave function and probability flux density at the interface
of the media, we obtain an expression for determining the
coefficients C, B and the dependence 8 (a) > 0.

Ze“)(ﬁ)(ﬁ sin[2kaa]

B = X
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236

_EV + Usphere +

the form of a finite bandgap:

2 2 2

X+ z
0, 22X +Z <1,

U= a? b2
- U x2+y2 ZZ > 1
0 T2 p2 =

where a and b are the semi-axes of the spheroid, and U, is
the height of the potential barrier for the charge carrier.
Let's write the Hamiltonian for the electron:

~ R _ 1
H=—-——V=V+U, (1.1)
2 m
Where
x2+y2 ZZ

o +E<,

b2

1»

2,2 2
x“+y z
41,

mz,

is the effective mass of the electron for the corresponding
region. The Schrodinger equation for a particle with the
Hamiltonian (1.1) cannot be solved exactly, so we will
perform a transition to new variables. Namely:

X=x, ¥

~ a
=Yy, z= ZZ.
For the new coordinates, we express the Hamiltonian

as:
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The dimensions of quantum dots are commensurate
with the de Broglie wavelength of the charge carriers, so
quantization of charge carrier motion will occur. For the
hole, the energy zone will be complex, but in this model
of a quantum dot, we can distinguish between heavy and
light hole zones. Calculating the energy of size
quantization for the ground state of heavy and light holes,
it is noteworthy that for heavy holes, it will be
significantly smaller, leading to a splitting at the minimum
point (I"-point) of the Brillouin zone between heavy and
light hole zones.

Specific calculations were performed for the CdS
guantum dot in the SiO, matrix. For this
nanoheterostructure, the energy of the optical LO-phonon
is 57.2 meV. The computation of the energy of the lowest
levels of heavy and light holes indicates that the adiabatic
approximation can only be applied to quantum dots of
small volumes (up to 33 nm), where the distance between
the energy levels of heavy and light holes is substantial.

In this work, we will consider small-volume quantum
dots, so when investigating interband transitions, we will
only take into account the zone of heavy holes.
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I1. Interaction of Polariton Phonons with
Excitons in a Spheroidal Quantum
Dot

The equation of motion for the relative displacement
vector U takes the form:

.u =—xu+ eEloc (2.1)

The relationship between the intensity of the local
electric field Eloc and the intensity of the average field E
and polarization Pis given by:

P, (2.2)

and the polarization vector

P= N(et + afloc). (2.3
In formulas (2.1)-(2.3), the following notations are
introduced:
U= *T";‘ is reduced mass of the ion pair, @ = a, +a_
my+m_

is polarizability of this pair, y is elasticity coefficient, N is
a number of elementary cells per unit volume of the
quantum dot.

The polarization field of the quantum dot is
determined by Maxwell's equations for the medium

—

D= g(w)ﬁ = E + 4nP,
E= —Vo, (2.4)
divD = 0,

where D is induction vector, @ is potential of the
polarization field. From equations (2.4), we obtain

e(w)AP(#) = 0, (2.5)
where
w2—w?
e(w) = ey ng, (2.6)

£s, wp, wr are known high-frequency dielectric
permittivity, frequencies of longitudinal and transverse
phonons in a bulk crystal from which the quantum dot is
formed.

For confined phonons of the quantum dot:

e(w) =0, a AD(F) # 0. (2.7
Therefore, as seen from (2.6), the frequency of

confined oscillations of polarization coincides with the
frequency of longitudinal optical oscillations w = w,.

Vim A= ot S @ - D+ (L= ot

Now let's determine the potential of the polarization
field @, (#) and the corresponding component of the
displacement vector ;, caused by confined optical
phonons. Since e(w) = 0, then from the first equation
(2.4) we have:

E = —4nP,. (2.8)

where the index L indicates that the longitudinal
component is considered. Substituting (2.8) into equation
(2.2), we obtain a relationship between the local field and
polarization:

Ejoe = _?ﬁL- (2.9)

From equations (2.3) and (2.9), we find the
polarization vector in the form:

= Ne -

P, = Tozp b (2.10)

where g = grtNa. Returning again to equations (2.4),

where we have the equation for the potential @, (7).
Taking into account the conditions (2.8) and (2.10), we
have that:

4nNe —

£, () = 15

i, (7). (211)

When searching for the potential, it is necessary to
take into account that the polarization corresponding to
confined phonons disappears at the surface of the quantum
dot

?,(Mls = 0. (2.12)

Let's consider the case of an elongated spheroid.

The elongated spheroidal coordinates &, n, ¢ related
to the rectangular coordinates of the point x,y,z by the
following formulas:

x =@ =D - cos ¢,

=S JE@=DA—n)sing,
=2a,

§€[l,], ne[-1,1], ¢ €[0,2r], - - focal length.

The volume element computed using the Lame
coefficients takes the form

dV = dxdydz = %3(52 —n?)dé&dnde. (2.13)
The Laplace operator

coordinates is equal to

in elongated spheroidal
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The Helmholtz equation for the potential is given by:

(A + k2P, (F) =0,

where k is wave number.
If the potential @, (7) is expressed as the product:

?,(F) =

ml(f)sml(n)e lm¢ m= O 1 2

(2.15)

(2.16)

then the Helmholtz equation allows for variable separation. Thus, for the functions R,,,;(£), S,;(n) we obtain ordinary

differential equations:

2 = D2 R O]+ [~Amt + 2 = D = 2= Rpu(®)] = 0

@ =) 5= S )] + [ A + €2 =

Where ¢ = % > 0, A, is separation constant, m is
integer.

The solutions to equations (2.17), (2.18) will be
denoted as R,,;(§) — elongated radial and S,,;(n) —
elongated spherical angular functions (ESAF) [15].

We return to equation (2.11). The potential &, () will
be sought in the form of an expansion over the complete
set of ESAF functions:

D, (F) = Yimn AmmnRimi(€n, §) S (Cnn)eim¢-

Using (2.22), the displacement in (2.11) can be
written as:

(2.22)

(2.23)

- =
U, (1) = Ximn Upmn,

where

1+28
4mtne

l_jlmn = ( ) lmnV(le(Cnv E)Sml(cn: 77)6”"4)) (2 24)
The coefficients Ay, remain unknown. We will
determine them in the process of the secondary
quantization of the phonon field.
To do this, it is necessary to write the equation of
motion for i, characterized by the effective mass of ions
4 and the frequency of longitudinal w, .

U, = —w?i,. (2.25)
To obtain equation (2.25), it is necessary to introduce
the Lagrangian density in the form of

ﬁlmn = Aimn ’ZNuw V[le(cn, f)sml (Cn: n)elm(p](blmn + blmn)

=] hN, -
Pimn = Aimn ; e V[le(cn: &)Smi(cnme lm('b](blmn binn)-

The Hamiltonian of polarization oscillations

238

(2.17)
mmﬂ (2.18)
L=T—V—%@E—w%ﬂ. (2.26)

Then the density of the generalized momentum is
equal to:

= p, = Nuii,. (2.27)

L
6‘&1‘

Now we can write the Hamiltonian function for
confined polar phonon oscillations of the quantum dot:

H=L(

Let's proceed to the operators of physical quantities,
following the principles of quantum mechanics:

i += NquuL) dv.

2nu

(2.28)

pL — ﬁL: U, - aLv (2.29)
Similarly to classical relationships
ﬁL = Yimn ﬁlmn: ﬁL = Yimn Utmn, (2.30)

We need to transition from canonical variables to
operators of second quantization by, bit,,,, that would
satisfy bosonic commutation relations:

[blmn' im'n’ ] - 6!! 6nn- (2-31)
Let's express the operators in the form
(2.32)
(2.33)
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L= N HopUp Uy ) =

h . —i im'

2 imn %AlmnAl’m'n' fV[le(Cn: E)Sml(cn! 77)6 lm¢] X V[Rm'l'(cn’! f)Sm’l’(Cn” n)elm ¢]{(blmn - bl_'r—nn) X
l,m’n’
(b;m'n’ - bl'm'n;) + (bltnn + bynn) X (bl'm'n; + b;m'n')}dv =
* —i im' .
Z lmn AlmnAl'm'n’ fv[le(Cnv f)Sml (Cn' ﬂ)e lmd)] x V[Rm’l’(cn” f)Sm’l’(Cn”n)elm ¢]dV x [hw (bl-'r—nnblmn + E)]

l,m’n’

(2.34)
The volume integral over the quantum dot is calculated using Green's theorem. Taking into account that the potential

on the surface is zero (2.12), therefore, according to (2.22) R,,; (¢, &,) = 0, because & = &, determines the surface of the
spheroid. So,

Sy VY[R () ©) St (cn, 1)e ML Y[R 111 (s €)S pryy (Cr )™ ¢ =

_fV AV (R (cn) s‘)sz(Cn,n)e‘im"’)Vz(Rm'z'(Cnus‘)Sm'z'(cnun)eim"p). (2.35)
Let's recall that
av =L (&2 - n?) dgdnds, (2.36)
2 % (92 _qyO L0 4 2yd Em?
V= d2(§2-n?) {Bf (f D I3 + an @ n )577 + (£2-1)(1-12) 6¢2}' (2.37)

Let's compute the integral (2.35). Taking into account (2.36) and (2.37), we obtain:

d _ 3 a a a F2_p2
I = —;fdfdnd¢(Rmz(cn,€)sz(cn.n)e my x {E(fz - 1)&*‘%(1 - 772)%4' m} X
il _ a 2 @ a
(Rm'l'(cn" E)Sm’l'(cn" U)elm ¢) = _gf dfdndd) le(cnr f)Sml(cn: 77)6 im¢ X {B_f ({2 - 1)6_§ + a (1 - 772) % +

§%-n? im'¢
(€2-1)(1-12) ad,z} X Ry (€, E)Spryr (i me .

Taking into account that
2T i(m! -
fo el(m m)y — 2”5mm’!

Then, the reduced integral | reduces to the following:

I = —md8,,y, f d &dnRyy (cn, §) S (Cnm) X

d a a a 2 2
(5 (€ = D+ - (1= 1) - = F = o R (0, DS (). (2:38)

Now, taking into account equations (2.17) and (2.18), we have

I'==1d8, [ dEANR (Cry E) S (e M{(A = c2(E2 = 1)) + (=2 — c2(1 = 12)} X Ry (€t E) iy (€t ) =
T[dc‘rzldmm'dll'dnn' {ffo de%Ll(cnt §& - f_ll dnsrznl (cn, 77)772}- (2.39)

H= Yiimn Dy (bltrmbl’m’n; + %) S ! O11 O |Apmn |*d [ffo dSeran(Cn, §&% - f_ll d77572nz (Cn, 77)772] =
Elmn th (bltnnblmn + 3)1 (2-40)

2
if

1
A = {mdc} [ dgRZ (e, ) €2 = [, dnSEi(crmn?]} ¥ = =

1 1

tn \/ffo deqznl(Cnvf)‘fz _f_ll dr]S.rznl(cn,n)nz

(2.41)

Substituting Ulmn the formula (2.32) into the formula (2.11), assuming that the potential @ is an operator. Therefore,

~ 4 f h )
@ = %Almn mle(Cnr &)Spu(cn, 77)6""4’ (bl_'r-nn + bimn)- (2.42)

Taking into account that
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1 \/47‘mez _ [t (2.43)

1428+ uw? 0 €0

Then the potential operator

1
§ 1 2
11 1 [ AR S [ dnStulenmn®]”
nd Cn

[ dER: ([ dnS2y(en )

x ) S i (b 4 Biy). (244)
J J7° dgR G (en ) J JZ; dnsgy(enm)

And the electron-phonon interaction operator will take the form:
¢ 1
g = o= /2th T 1 1 [ aiRE(cnd)E? [ anshy(cnmn? [?
Hine = —e® = =¢ T\]f__;a[lfodf;nz( T anstgtean |
° 1 ml Cn,f) —1 @Momi(En
Rmi(cn,é) Smi(cn.m) ;
X et — o ™ (b, + bigen). (2.45)
\/fl déRy, (cn)) \/f_ldrlsml(cn.rl)

Let's write down the exciton-phonon interaction function, taking into account spontaneous phonon emission [16], we
get:

Bo(m, L) = [0 dg, [* dn, [} dbei (orne ) [} A 7 dnn [} dnpi, G in d) (e —
eq’e)‘Pe(fe: Ne» Pe) Pn(En My Pr) =
ffo dé, f_11 dne fgzn d¢e(pg CerNer de) ffo dép f_11 dnp fozn d(l)th’zl (Snr T ¢h)(eim¢hFh - eimqbeFe)] (2.46)
where @, (€., Ne, Pe), ©n(En 1, P1r) the wave functions of the electron and hole, respectively.

1

_ 2hwy, 1 1 1 fo derznl(Cn‘f)fz f_ll dnsrznz(cn.n)nz z Rmi(cn.é) Smi(cnn)
Pl e o | Far s Hasten | XT3 st e (2.47)
© o 1 § ml(cn'f) -1 4P en \/flongrznl(Cn:f) \/f_1dn5ml(cn»n)
Taking into  account  that me=m, =0, eMPh=embe=1 i (&, N de)=Pe(€cine),

OnCn My Dr) = ©r(En,mp), simplify (2.46) as follows:

Bo(m, L,n) = [0 dE, [1 dn, [T dpew? Eoime) [0 dE, [* dnn [27 dpp €™ Phe? (4, 1) Fy —
Jfodg, [ dn, [7 dpoe™ e (,,m,) [50dey [, dun [T dpnepl (Enm)F, =
@m)? [ de, [ dnog? (Eone) [0 de, [, dnnel (Enn)Fy =
@m)? [ de, [1 dn.g? (Eane) [0 déy [, dnnpl (EnniF, (2.48)

The coefficient of interband light absorption is found using the formula:

a(@) =—2¢_p Im[G,(@)] (2.49)
nemhoVy  €¥ n )
where G, (@) = —%-e‘go * gn(w) is Green's function, gn(w) = f0°° e Mt . pllw=wn)t,
M 2 iV —iwfmto iy Liwfmt ~ ~ 1
eZlmn {1 Fme I ne g, 9o = ZitlAmol* (2% + 1), Vi=—r
ekbT

A = Zl%j'n), m, [, n are phonon quantum numbers, Q; = hw;, is the energy of confined phonons.

based on the dipole approximation, as the electromagnetic

] ] ] wave's wavelength is significantly larger than the quantum
Ill.Interband Light Absorption in ot dimensions.

Heterostructures In practice, ensembles of quantum dots (QDs) are
often obtained within crystalline or polymeric matrices or
We consider the interband light absorption in a in colloidal solutions. Regardless of the growth method

semiconductor quasi-zero-dimensional nanoheterosystem ~ Used, the set of QDs is always characterized by size
dispersion. It is assumed that the distribution of QDs by
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size can be approximated by a Gaussian function. Using
formula (2.49), dependencies of the coefficient of
electromagnetic wave absorption on the incident quantum
energy are plotted for an average QD volume of 14 nm?
and a size dispersion of 1%. For each dependency, we
denote the coefficient K, representing the ratio of the
major (b) to minor (a) axes of the ellipsoid.

Figure 1 shows the absorption coefficient obtained for
a quantum dot of an elongated spheroid shape. In the
energy transition range, there are four absorption peaks:
two of them are due to charge carrier transitions between
optically active levels in the quantum dot (phonon-free
bands), and the other two arise from electron-phonon
interactions and are phonon replicas. In this figure, the
graphs of the light interband absorption coefficient as a
function of the frequency of the incident electromagnetic
wave for both the interaction of excitons with confined
phonons and the bulk model practically coincide. This
occurs due to the relationship of the ellipsoid semi-axes
K =1.01, which means that b = a. The calculations show
that the magnitude of the exciton-phonon interaction in the
model of such a quasi-sphere is almost independent of the
choice of phonons involved in the interband light
absorption.

[

|
A

E, eV
Fig. 1. Interband absorption coefficients considering
confined phonons (solid curve), T =4.2 K, K=1.01. The
dashed curve corresponds to a = a(w) absorption
considering phonons of the bulk crystal.
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——— |
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2.85

When studying the absorption coefficients of
interband optical transitions, an important factor is the
temperature at which the transition occurs. In Fig. 2, the
light absorption coefficient for interband transitions of
charge carriers is shown for the same models of a quantum
dot in the form of an elongated ellipsoid of revolution at
room temperature (T =300 K). Comparing the shape of
the absorption coefficient frequency dependence graph
with the graph in Fig. 1 (T=4.2 K), we note the
appearance of additional phonon replicas to the left of the
non-phonon maxima of the absorption coefficient. The
absolute values of the absorption coefficient maxima for
all transitions have slightly decreased.

Let's analyze Fig. 3 in more detail. The considered QD
model is a spheroid with an aspect ratio of 0.5, meaning
b = 1.5a. We observe that for both cases (considering
confined phonons as well as phonons of the bulk crystal),
light absorption occurs at approximately the same
energies. However, compared to the "quasisphere” case
(Figures 1 and 2), the overall energy at which light
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1.5

(1-107.m4

0.5

VA

3.05

T—
3.15

2.85 2.95

E, eV
Fig. 2. Interband absorption coefficients considering
confined phonons (solid curve), T = 300 K, K=1.01. The
dashed curve corresponds to a = a(w) absorption
considering phonons of the bulk crystal.

A

¥

0.5

2.75 2.85 3.05

E, eV
Fig. 3. Interband absorption coefficients taking into
account confined phonons (solid curve), T=4.2K,
K =1.5. The dashed curve corresponds to a = a(w)
absorption considering phonons of the bulk crystal.

absorption occurs decreases - the absorption wavelength
shifts towards the red part of the spectrum. It is evident that
the absorption peaks considering confined phonons are
shifted towards higher energies compared to the case
considering bulk phonons. The absolute values of the
absorption coefficient maxima, which are caused by phonon
replicas, are higher for the model with bulk phonons, except
for light absorption during the charge transition between the
lowest (ground) states of the electron and hole, where the
maximum of the interband light absorption coefficient with
confined phonons is higher.

When comparing the contribution of confined phonon
polarizations with bulk phonons to the interband charge
transition process under the influence of external
electromagnetic waves, we observe that the difference in
absolute values of absorption peaks in Fig. 4 increases for all
absorption maxima due to the temperature rise to 300 K.

Comparing the transitions driven by exciton-phonon
interaction, namely interband optical transitions with
confined phonons and bulk phonons, we observe that the
phonon replicas play a more significant role in the maxima
of light optical absorption, especially for the case of bulk
phonons, across the entire absorption range at the
considered temperatures.

Examining Figures 5-6, which depict absorption
spectra for quantum dots in the form of an elongated
spheroid with an aspect ratio of K=2 (b = 2a), we observe
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[

05

3.05

Fig. 4. Interband absorption coefficients taking into
account confined phonons (solid curve), T =300K,
K =1.5. The dashed curve corresponds to a = a(w)

absorption considering phonons of the bulk crystal.
3.

25

2
q__T:'“,

10, m™!

0.5

2.7

3.
E, eV
Fig. 5. Interband absorption coefficients taking into
account confined phonons (solid curve), T=4.2 K, K= 2.
The dashed curve corresponds to @ = a(w) absorption
considering phonons of the bulk crystal.
3.

2.7 3.

E. eV
Fig. 6. Interband absorption coefficients taking into
account confined phonons (solid curve), T =300 K, K = 2.
The dashed curve corresponds to a = a(w) absorption
considering phonons of the bulk crystal.

an increase in the absolute values of the absorption
coefficient maxima between the two lowest optically
active electron and hole levels (phonon-free absorption
band). This difference from models with a smaller aspect
ratio is explained by a reduction in the probability of
interband charge carrier transitions due to the interaction
with phonons resulting from light absorption.

Analyzing the plots of the dependence of the
interband light absorption coefficient on the frequency of
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the incident electromagnetic wave in Figures 5-6, we
observe even more "smoothing" of phonon replicas across
the entire absorption range when considering polariton-
confined phonons. It is noteworthy that when considering
exciton-phonon interaction in the bulk model, the absolute
values of the absorption maxima of phonon replicas are
significantly higher than the peak values calculated with
confined phonons in the quantum dot.

Further increasing the aspect ratio of the quantum dot
in the form of an elongated spheroid, in our opinion, will
simultaneously result in a narrowing of the region where
interband charge carrier transitions occur, accompanied by
a reduction in the distances between levels.

It is visually evident that at large aspect ratios of the
ellipsoidal-shaped quantum dot CdS/SiO, the interaction
of charge carriers with confined phonons diminishes, and
the non-phonon absorption bands will have a much higher
probability of interband transitions for the charge carriers
than the phonon replicas.

Conclusions

In this study, we have investigated the interband
absorption spectrum of CdS quantum dots with a spherical
shape embedded in a SiO2 matrix, taking into account the
interaction of electron-hole pairs with polariton phonons.
We analyzed the differences between the volume Frohlich
model (phonons of a bulk crystal) and the interaction of
the exciton-phonon system, considering confined
phonons. Absorption coefficients related to charge carrier
transitions between the lowest excitonic optically active
levels in quantum dots under the influence of linearly
polarized light were calculated. We focused on quantum
dot volumes where the energy levels of electrons and holes
are sufficiently separated. Thus, considering the possible
dispersion of quantum dots in size within the matrix and
accounting for different aspect ratios for quantum dots
with an elongated spheroid shape, the identified levels can
be distinguished in the analysis of the frequency
dependence of the interband absorption coefficient. The
calculations demonstrate that both the peak magnitudes
and the energies of the interband absorption coefficient
peaks depend not only on the volume and shape of
quantum dots but also on the choice of the phonon model.
For this heterostructure, we have shown the similarity of
absorption spectra when considering both bulk crystal
phonons and confined phonons.
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B.b. lN'onbewkuii, P.A. Jlemko, B.B. Bpuran, 10.0. Yrpun, B.P. Kapmiii

Bruius nosasipusauniiiHux poHOHIB HA Mi’K30HHE NMOTJIMHAHHS CBITJIA Y
chepoinanbHii kKBaHTOBIN TOYLI rerepocucuremu CdS/SiO:

JIpocobuyvruil depoicasnuii nedazoziunuil ynigepcumem imeri leana @panka,
Gaxynomem ¢hizuxu, mamemamuxu, eKOHOMIKU Ma IHHOBAYTUHUX MeXHON02il, Kaghedpa (izuxu ma iHghopmayitinux cucmem,

M. [lpoeobuu, Vkpaina, hol.wit@gmail.com

HociipkeHo BB 00MexeHnX (pOHOHIB Ha KOoe(illieHT MIXK30HHOTO MOTJIMHAHHS TOJISIPU30BAHOTO CBIT/Ia
Bil 1oro dyactotu. 3poOJICHO TOpPIBHSAHHSA OTPUMAHHMX pe3yNbTaTiB i3 BIAMOBIZHUMHU TPH BpaxyBaHHI
noyisipu3anifHuX (GOHOHIB MAaCHBHOTO KPHUCTaTy. BCTaHOBIEHO 3aleKHICTh MIXK30HHOTO TOTJIMHAHHS CBIiTJa BiJ
CHiBBiHOLIGHHs MiBocel emincoina. OOUUCIECHHS MPOBOIWINCH JUIsl PI3HUX TEMIIepaTyp i pajiyciB KBaHTOBOI
Touku rerepoctpykrypu CdS/SiO2 dpopmu BuTsirHYTOTO Chepoina.

Kiwuosi cioBa: pakrop Xyanra-Pica, ontudni mepexoan, GOHOHH, KOSQIIi€HT MOTIMHAHHS.
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