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In this work we investigated the effect of the non-concentricity parameter on the magnitude
of the exciton dark-light splitting in spherical non-concentric CdSe/CdS core-shell quantum dots.
Quantum dots with both narrow and wide shells have been investigated. It has been shown that
as the shell radius increases, the exchange interaction energy decreases and the exciton dark-light
splitting decreases too. However, with fixed core and shell sizes, the core displacement from the
common center leads to a monotonic increase in the exchange interaction for small shell radii and to
a non-monotonic increase for larger shell radii. The obtained results are consistent with experimental
data.
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I. INTRODUCTION

Modern demands for high energy efficiency and low
energy consumption drive researchers to develop new de-
vices based on novel organic and inorganic materials.
These include solar panels, detectors, sources of elec-
tromagnetic radiation, and solar concentrators. Solar lu-
minescent concentrators based on quantum dots (QDs),
which have high efficiency in collecting solar energy, de-
serve special attention [1]. As shown in work [2], core-
shell quantum dots (CSQDs) are particularly effective for
solar concentrators. The application of CdSe/CdS quan-
tum dots as luminescent centers has made it possible to
achieve the luminescence quantum efficiency (LQE) 86%
[2]. These CSQDs exhibit substantial absorption cross-
sections and adjustable emission properties determined
by the size of CSQDs. Additionally, colloidal CSQDs of-
fer improved photostability compared to organic chro-
mophores and can be integrated into organic or inor-
ganic matrices through solution-based methods. Also
PbS/CdS CSQDs have large LQE of 50% [3] and 70%
[4]. This efficiency is achieved because CdSe/CdS and
PbS/CdS CSQDs have a significant difference between
the absorption and luminescence bands. Simple CdSe
QDs do not have a large value of the Stokes shift [5–
7]. The Stokes shift can be increased in the CSQD by
separating electrons and holes in different regions of the
QD. It can be achieved in the CSQD of the II type or
in the CSQD of the I type with an especially thick shell,
like CdSe/CdS CSQD, (types of the QD are presented in
[8]]). In summary, the QDs with a large Stokes shift are
a promising candidate for use in solar concentrators.

Given the aforementioned, the Stokes shift in QDs is

an important physical effect that underlies the construc-
tion of solar luminescent concentrators. There are var-
ious reasons for the Stokes shift in quantum dots. One
of the reasons is the electron–hole exchange interaction,
which causes exciton dark-light splitting [5]. The mecha-
nism of the Stokes shift in semiconductor QDs has been
analyzed and discussed in [9]. The influence of polar-
ization and deformation on the electron–hole exchange
interaction has been analyzed in [10]. There, in [10], it
shown that these two opposite effects (polarization and
deformation) in the InAs/GaAs QD partially offset each
other. In other heterostructures with QDs (where the di-
electric permittivities and lattice constants of the media
are close to each other), the effects of strain and polar-
ization practically do not influence the exciton dark-light
splitting.

No matter what QD growth technologies are used (for
example, [11–13]), there is always a chance that the
core will be off-center, especially in the case of a thick
shell. The use of colloidal technologies allows for the
production of approximately spherical QDs. Therefore,
in most cases, spherical non-concentric CSQDs are ob-
tained. Since the core size and shell thickness affect the
energy spectra of electrons and holes, these dimensions
will consequently influence the magnitude of the Stokes
shift. As shown in [14, 15], the energy spectra also de-
pend on the non-concentricity parameter. Also it was
defined that the non-concentricity parameter has an ef-
fect on the interband absorption [16]. Given this, it is
logical to assume that the non-concentricity parameter
will also affect the exciton dark-light splitting in spher-
ical non-concentric CSQDs. This very issue is the focus
of the proposed work.
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II. THEORY OF ELECTRON (HOLE) STATES

A non-concentric CSQD is considered. The radius of
the core is r0, and the radius of the shell is r1. We assume
that the core is displaced from the common center by a
distance D along the z-axis (see Fig. 1). Also we consider
condition D ≤ r1 − r0.

Fig. 1. The geometric model of the spherical non-concentric
CSQD

The Hamiltonian of the electron (hole) within the frame-
work of the effective mass method has the form:

Ĥ = −∇·
(

m0

m (r)
∇
)
+ U(r). (1)

In this work, the position-dependent effective mass

Hamiltonian is reduced to the most common BenDaniel–
Duke form [17]. More complex models of the effective
Hamiltonian with a position-dependent mass with order-
ing problem, like in [18–20] are not consided. Also the
proposed Hamiltonian (1) is written in units of effective
Rydberg energy Ry∗ = ℏ2/

(
2m0a

∗2
b

)
and effective Bohr

radius a∗b =
(
ℏ2ε

)
/
(
m0e

2
)
, m0 is an electron effective

mass in core, ε = (ε0 + ε1) /2 is the average dielectric
permittivity, ℏ is the Planck constant, e is the elemen-
tary charge,

m(r) =


m0, r ∈ core,

m1, r ∈ shell,

m2, r ∈ matrix

(2)

is the effective electron (hole) mass,

U(r) =


0, r ∈ core,

U1, r ∈ shell,

U2, r ∈ matrix

(3)

is the confinement potential for electron (hole), U2 > U1.
If we consider electron states, the masses are as follows:
m0 = me

0, m1 = me
1, m2 = me

2, U1 = U e
1 , U2 = U e

2 .
For hole states, we use m0 = mh

0 , m1 = mh
1 , m2 = mh

2 ,
U1 = Uh

1 , U2 = Uh
2 .

To determine the energy spectrum and wave func-
tions of an electron (hole) in the spherical non-concentric
CSQD, it is necessary to solve the Schrödinger equation
using Hamiltonian (1). However, finding exact analytical
solutions for the Schrödinger equation in this case, where
D ̸= 0, is not feasible. That’s why we use the plane wave
approach [14, 21, 22]. According to this method, the wave
function can be represented as follows

ψ (r) =
∑

nx,ny,nz

Cnx,ny,nz
ψ(0)
nx,ny,nz

(x, y, z), (4)

where

ψ(0)
nx,ny,nz

(x, y, z) =
1√
L3

exp

{
i [(kx + nxKx)x+ (ky + nyKy) y + (kz + nzKz) z]

}
, (5)

L represents the length of the unit cell’s edge in the x, y, and z directions within the coordinate system,

Kx = Ky = Kz ≡ 2π/L, (6)

nx∈ [−nmax, . . . , nmax] , ny∈ [−nmax, . . . , nmax] , nz∈ [−nmax, . . . , nmax] . (7)

Studies [14, 21, 22] showed that convergence was
achieved with parameters nmax = 7 and L = 2.5 + 2r1.
Additionally, it was verified that the results are not influ-
enced by the wave vector components (kx, ky, kz) under

these conditions. Therefore, for the following computa-
tions, we set kx = ky = kz = 0.

By substituting wave function (4) into the Schrödinger
equation with Hamiltonian (1), we obtain the following
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system of linear homogeneous equations:

∑
nx,ny,nz

(
Tn′

x, n′
y, n′

z
nx, ny, nz

+ Un′
x, n′

y, n′
z

nx, ny, nz

− Eδn′
x, n′

y, n′
z

nx, ny, nz

)

×Cnx,ny,nz
= 0. (8)

Matrix element Tn′
x, n′

y, n′
z

nx, ny, nz

is presented in the appendix

and Un′
x, n′

y, n′
z

nx, ny, nz

was presented and derived in the work

[14] for the spherical non-concentric CSQD.
The electron (hole) energy E and all coefficients

Cnx,ny,nz can be calculated using the system of linear
homogeneous equations (8) and with the normalization

condition
∑

nx,ny,nz

∣∣Cnx,ny,nz

∣∣2 = 1. As a result, the

wave function (4) can be determined.

III. THE EXCITON DARK-LIGHT SPLITTING

The electron–hole exchange interaction is given in [5,
10]:

Ĥex = −(2/3)εexch(a0)
3δ(re − rh)(σe · Jh)

= −αδ(re − rh)(σe · Jh), (9)

where a0 is the QD lattice parameter, εexch is the ex-
change strength constant, which can be defined from
equation [5]:

ℏωst = (8/3π)(a0/aex)
3εexch, (10)

aex is the exciton radius, ℏωst = 0.13 meV [5]. σe is the
electron Pauli spin-1/2 matrix, Jh is the hole spin matrix.
In the case of the singleband hole model, the hole spin
equals to 1/2.
To define the exchange interaction, we use the

electron–hole wave function in the form:

ψex (rel, rh) =

1/2∑
sz=−1/2

1/2∑
jz=−1/2

csz,jzψel(rel)χel;sz

×ψh(rh)χh;jz . (11)

where χ is the spin function. Using function (11), the
matrix of the electron–hole exchange interaction will take
the form [10]:

Z 0 0 0
0 −Z 2Z 0
0 2Z −Z 0
0 0 0 Z

 , (12)

where

Z = α

∫
|ψel(r)|2 |ψh(r)|2 dr. (13)

The eigenvalues of (12) define the electron–hole exchange
interaction. Therefore we get four eigenvalues. Three of
them are equal to Z. This corresponds to an optically
active state (light states) with the total electron–hole
spin momentum equal to 1. One eigenvalue is equal to
−3Z (total electron–hole spin momentum is equal to 0).
This is a dark state. Therefore, the splitting energy is
Es = 4Z.

IV. RESULTS DISCUSSION

The calculations were carried out for the spherical
core-shell quantum dot CdSe/CdS, using the parame-
ters specified in [6, 7]. Effective masses me

0 = 0.13me,
me

1 = 0.21me, m
e
2 = me [6]; m

h
0 = 0.45me, m

h
1 = 0.68me,

mh
2 = me [6]. Here, me is a free electron mass. The

conduction-band and valency-band energy offset U e
1 =

320 meV and Uh
1 = 430 meV [6]. We chose the confine-

ment potential on the boundary shell-matrix to be very
large U e

1 = Uh
2 = 2000 meV. First of all, we calculated

the dependence of the electron and hole energy on the
core displacement parameter D for different values of the
shell radius while keeping the core size fixed r0 = 15 Å.
This particular size has been considered in the works
[6, 7]. Also in these works, the shell thickness has been
obtained:

A) h = 8 Å (r1 = 23 Å);

B) h = 16 Å (r1 = 31 Å);

C) h = 28 Å (r1 = 43 Å);

D) h = 56 Å (r1 = 71 Å).

We assume that in these and other samples, concentri-
city may be disrupted. That is why the electron and
hole energies are functions of D. The dependence of both
electron and hole ground state energies on D is presented
in Fig. 2.
From Fig. 2, it can be seen that the energy of the

electron and hole increases as the QD core shifts away
from the common center. However, as the shell radi-
us increases, this dependence becomes less pronounced.
This dependence is due to the fact that the electron
and hole are less in�uenced by the second heterointerface
(shell-matrix). This results are in good agreement with
the ones in [14, 16].
The relative shift in the positions of the electron

and hole wave functions will cause a change in the
electron�hole exchange interaction. The results of the
calculated dependence of the electron�hole interaction
on the parameter D are presented in Fig. 3.
From Fig. 3, it can be seen that the electron�hole

exchange interaction in concentric core-shell QD (D = 0)
decreases if the shell thickness increases from 23 to 71 �A.
These results are in good qualitative agreement with the
experimental results published in [6]. Also one can see the
monotonous growth in the exchange energy with increasi-
ngD for core-shell QD with small and medium shell radi-
us (r1 = 23 �A and r1 = 31 �A). If the shell radius is large
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(for example, r1 = 43 �A or r1 = 71 �A), non-monotonous
dependence is observed. This dependence can be explai-

ned based on the probability density distribution of the
electron and hole in the core-shell QD (Figs. 4 and 5).

Ðèñ. 2. Electron and hole ground state energy as a functions of the core displacement D for di�erent shell radii

Ðèñ. 3. The energy of exciton dark-light splitting as a function of the core displacement D for di�erent shell radii

As the shell thickness increases (for a concentric
CSQD), the electron wave function penetrates from the
core into the shell due to the shallow potential well in
the QD core. For the hole, the corresponding potenti-
al well is deeper, and the e�ective mass of the hole is
larger, resulting in a more localized wave function wi-
thin the core. Consequently, the overlap of the wave
functions decreases, leading to a reduction in integral
(13). Therefore, the exchange interaction in concentric
spherical core-shell quantum dots decreases with the
increase in shell thickness. However, with �xed core and

shell sizes, the displacement of the core is accompani-
ed by an increase in exchange energy. For example, in
the case of r1 = 23 �A, the overlap of the electron and
hole wave functions increases monotonically with core di-
splacement. This is due to the fact that the electron also
experiences the in�uence of the shell-matrix boundary
with any core displacement. In the case of r1 = 43 �A, the
electron does not immediately experience the in�uence
of the shell-matrix boundary, so the increase is slow and
almost unnoticeable with core displacement. However,
when the displacement becomes signi�cant (see Fig. 5.3e)
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and the core approaches the shell-matrix boundary, this
in�uence becomes noticeable, and the electron's wave
function is pushed out of the core to the opposite side of
the displacement. For the hole, a similar situation is not

observed because the hole is much more strongly con�-
ned by the potential well. As a result, the overlap of the
wave functions decreases, leading to a reduction in the
exchange interaction (Fig. 3, r1 = 43 �A and r1 = 71 �A).

Ðèñ. 4. The probability density distribution of the electron (1e, 2e, 3,e) and hole (1h, 2h, 3h) in the core-shell QD. Shell radius
is r1 = 23 �A

Ðèñ. 5. The probability density distribution of the electron (1e, 2e, 3,e) and hole (1h, 2h, 3h) in the core-shell QD. Shell radius
is r1 = 43 �A
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V. CONCLUSION

Thus, in this work, a spherical non-concentric CSQD
has been studied using the plane-wave method. The
ground-state energies of the electron and hole are
determined. The dependence of these energies on the
shell thickness and the position of the core in the
quantum dot is analyzed. It is shown that the di-
splacement of the core from the common center causes an
increase in the energy of both the electron and the hole.
For QDs with a larger shell radius, this increase occurs
more slowly than for QDs with a smaller shell radius.
Based on the obtained wave functions of the electron
and hole, the exchange interaction energy, which de�nes

the splitting of dark and bright states, is calculated. It
is shown that the exchange interaction energy decreases
with increasing shell radius, while the core displacement
from the quantum dot center causes an increase in
the exchange interaction energy. Moreover, for small
shell radii, the exchange interaction energy increases
monotonically, while for larger radii, it increases non-
monotonically. The reason for this dependence lies in
the mutual spatial arrangement of the electron and hole
wave functions in the QD. The obtained results quali-
tatively agree with experimental studies. To improve the
convergence of the results, the model can be extended to
account for the complex structure of the valence band,
which will be implemented in our subsequent work.

APPENDIX

Tn′
x, n′

y, n′
z

nx, ny, nz

= −
∫ L/2

−L/2

∫ L/2

−L/2

∫ L/2

−L/2

ψ
(0)∗
n′
x,n

′
y,n

′
z
(x, y, z)∇ m0

m(r)
∇ψ(0)

nx,ny,nz
(x, y, z) dV.

We take into account the Hermiticity of the momentum operator (in the chosen coordinate system it has the form
−i∇). After transformations and using (5), we get

Tn′
x, n′

y, n′
z

nx, ny, nz

=
1

L3

[
(kx + n′xKx)(kx + nxKx) + (ky + n′yKy)(ky + nyKy) + (kz + n′zKz)(kz + nzKz)

]

×
∫ L/2

−L/2

∫ L/2

−L/2

∫ L/2

−L/2

m0

m(r)
exp

{
iλ · r

}
dV,

where λ = 2π
L (i(nx − n′x) + j(ny − n′y) + k(nz − n′z)). According to (6) and kx = ky = kz = 0, we get

Tn′
x, n′

y, n′
z

nx, ny, nz

=
1

L3

(
2π

L

)2 [
n′xnx + n′yny + n′znz

] ∫ L/2

−L/2

∫ L/2

−L/2

∫ L/2

−L/2

m0

m(r)
exp

{
iλ · r

}
dV.

The next step is to calculate the integral.

I =

∫ L/2

−L/2

∫ L/2

−L/2

∫ L/2

−L/2

m0

m(r)
eiλ·r dV =

∫
in matrix

m0

m2
eiλ·r dV +

∫
in shell

m0

m1
eiλ·r dV +

∫
in core

m0

m0
eiλ·r dV.

Let us add and subtract the integral over the ball r1:

I =

∫
in matrix

m0

m2
eiλ·r dV +

∫
in ball r1

m0

m2
eiλ·r dV −

∫
in ball r1

m0

m2
eiλ·r dV

+

∫
in shell

m0

m1
eiλ·r dV +

∫
in core

m0

m0
eiλ·r dV.

Combine the �rst and second terms:

I =

∫
in box L

m0

m2
eiλ·r dV −

∫
in ball r1

m0

m2
eiλ·r dV +

∫
in shell

m0

m1
eiλ·r dV +

∫
in core

m0

m0
eiλ·r dV.

Due to the fact that the system of plane waves in a cube of length L is orthonormal, we have:

I = L3δn′
x,nx

δn′
y,ny

δn′
z,nz

−
∫
in ball r1

m0

m2
eiλ·r dV +

∫
in shell

m0

m1
eiλ·r dV +

∫
in core

m0

m0
eiλ·r dV.
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Let us add and subtract the other integral:

I = L3δn′
x,nxδn′

y,nyδn′
z,nz −

∫
in ball r1

m0

m2
eiλ·r dV +

∫
in shell

m0

m1
eiλ·r dV +

∫
in core

m0

m0
eiλ·r dV

+

∫
in core

m0

m1
eiλ·r dV −

∫
in core

m0

m1
eiλ·r dV.

The third and �fth terms can be joined:

I = L3δn′
x,nxδn′

y,nyδn′
z,nz −

∫
in ball r1

m0

m2
eiλ·r dV +

∫
in ball r1

m0

m1
eiλ·r dV +

∫
in core

m0

m0
eiλ·r dV

−
∫
in core

m0

m1
eiλ·r dV.

Now the second-third and the fourth-�fth terms can be combined too:

I = L3δn′
x,nxδn′

y,nyδn′
z,nz +

(
−m0

m2
+
m0

m1

)∫
in ball r1

eiλ·r dV +

(
m0

m0
− m0

m1

)∫
in core

eiλ·r dV.

The calculation of the second integral poses no issues; therefore, we will not provide it. The most interesting part is
the last integral, as the core is shifted by the distance D. This integral can be calculated in that way: let r = r′ −D,
and dx = dx′, dy = dy′, dz = dz′, dV = dV ′. That is why

∫
in core

eiλ·r dV =

∫
in core

eiλ·r′+iλ·D dV ′ = eiλ·D
∫
in core

eiλ·r′ dV ′.

Such transformations are absolutely valid when L → ∞. For practical use with controlled accuracy, it is necessary
to choose a su�ciently large L. Calculations have shown that with the proposed values of L in the main text of the
article, the results are convergent.
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1Êàôåäðà ôiçèêè òà iíôîðìàöiéíèõ ñèñòåì, Äðîãîáèöüêèé äåðæàâíèé ïåäàãîãi÷íèé óíiâåðñèòåò iìåíi Iâàíà Ôðàíêà,
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Ó ðîáîòi òåîðåòè÷íî äîñëiäæåíî âïëèâ ïàðàìåòðà íåöåíòðè÷íîñòi íà âåëè÷èíó ðîçùåïëåííÿ òåì-
íîãî òà ñâiòëîãî ñòàíiâ åêñèòîíiâ ó ñôåðè÷íèõ êâàíòîâèõ òî÷êàõ CdSe/CdS òèïó ÿäðî-îáîëîíêà çi
çìiùåíèì ÿäðîì âiä ñïiëüíîãî öåíòðà. Ðîçãëÿíóòî êâàíòîâi òî÷êè ç ðiçíîþ òîâùèíîþ îáîëîíîê: ÿê
òîíêèìè, òàê i øèðîêèìè. Îñîáëèâó óâàãó ïðèäiëåíî âïëèâó íåêîíöåíòðè÷íîñòi, òîáòî çìiùåííþ
ÿäðà âiä ñïiëüíîãî öåíòðà êâàíòîâî¨ òî÷êè, íà åíåð iþ åëåêòðîí-äiðêîâî¨ îáìiííî¨ âçà¹ìîäi¨, òîáòî
íà ðîçùåïëåííÿ òåìíîãî òà ñâiòëîãî åêñèòîííèõ ñòàíiâ. Äëÿ îïèñó ñèñòåìè âèêîðèñòàíî ìåòîä åôå-
êòèâíî¨ ìàñè, ùî âðàõîâó¹ âiäìiííîñòi â ìàñàõ åëåêòðîíiâ i äiðîê ó ìàòåðiàëàõ ÿäðà òà îáîëîíêè,
à òàêîæ ìîäåëü ïðÿìîêóòíèõ ïîòåíöiàëüíèõ ÿì i áàð'¹ðiâ. Öÿ ìîäåëü ¹ îäíi¹þ ç íàéïðîñòiøèõ, àëå
âîäíî÷àñ åôåêòèâíîþ äëÿ îïèñó ïîâåäiíêè íîñi¨â çàðÿäó â íàíîñòðóêòóðàõ òèïó ÿäðî-îáîëîíêà. Âiä-
ïîâiäíi ðiâíÿííÿ Øðåäèí åðà äëÿ åëåêòðîíà é äiðêè â ìåæàõ öi¹¨ ìîäåëi ðîçâ'ÿçàíî çà äîïîìîãîþ
ìåòîäó ðîçêëàäó çà ïëîñêèìè õâèëÿìè. Öå äà¹ çìîãó òî÷íî âðàõóâàòè âïëèâ ðiçíèõ ãåîìåòðè÷íèõ
ïàðàìåòðiâ êâàíòîâî¨ òî÷êè íà åíåð åòè÷íèé ñïåêòð i íà ïðîñòîðîâèé ðîçïîäië õâèëüîâèõ ôóí-
êöié íîñi¨â çàðÿäó. Ó ïiäñóìêó ðîçðàõóíêiâ ïîêàçàíî, ùî çi çáiëüøåííÿì ðàäióñà îáîëîíêè åíåð iÿ
åëåêòðîí-äiðêîâî¨ îáìiííî¨ âçà¹ìîäi¨ çìåíøó¹òüñÿ, ùî çìåíøó¹ ðîçùåïëåííÿ òåìíîãî i ñâiòëîãî ñòà-
íiâ åêñèòîíiâ. Öå ìîæíà ïîÿñíèòè çáiëüøåííÿì âiäñòàíi ìiæ õâèëüîâèìè ôóíêöiÿìè åëåêòðîíà é
äiðêè ó âåëèêèõ îáîëîíêàõ, ùî çíèæó¹ ¨õí¹ ïåðåêðèòòÿ i, âiäïîâiäíî, åíåð iþ îáìiííî¨ âçà¹ìîäi¨.
Îêðiì òîãî, çà ôiêñîâàíèõ ðîçìiðiâ ÿäðà òà îáîëîíêè âèÿâëåíî, ùî çìiùåííÿ ÿäðà âiä ñïiëüíî-
ãî öåíòðà êâàíòîâî¨ òî÷êè ìà¹ ðiçíèé âïëèâ çàëåæíî âiä ðàäióñà îáîëîíêè. Äëÿ ìàëèõ ðàäióñiâ
îáîëîíêè ñïîñòåðiãà¹ìî ìîíîòîííå çáiëüøåííÿ åíåð i¨ îáìiííî¨ âçà¹ìîäi¨ çi çáiëüøåííÿì íåöåíòðè-
÷íîñòi, òîäi ÿê äëÿ áiëüøèõ ðàäióñiâ öÿ çàëåæíiñòü ñòà¹ íåìîíîòîííîþ. Öå ïîÿñíþ¹ìî ñêëàäíiøèì
ïåðåêðèòòÿì õâèëüîâèõ ôóíêöié ó ñèñòåìàõ ç âåëèêèìè îáîëîíêàìè, äå õâèëüîâi ôóíêöi¨ åëåêòðîíà
é äiðêè ìîæóòü ìàòè ñêëàäíèé ðîçïîäië ó ïðîñòîði. Îòðèìàíi ðåçóëüòàòè äîáðå óçãîäæóþòüñÿ ç
åêñïåðèìåíòàëüíèìè äàíèìè.

Êëþ÷îâi ñëîâà: ñïåêòðè ñîíÿ÷íèõ ñïàëàõiâ, îáðîáêà àñòðîíîìi÷íèõ çîáðàæåíü, îá÷èñëåííÿ
íà ãðàôi÷íèõ ïðîöåñîðàõ, àíàëiç àñòðîíîìi÷íèõ äàíèõ, ñïåêòðîñêîïiÿêâàíòîâà òî÷êà òèïó ÿäðî-
îáîëîíêà, ïàðàìåòð íåöåíòòðè÷íîñòi, ðîçùåïëåííÿ òåìíèõ òà ñâiòëèõ ñòàíiâ åêñèòîíà.
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