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Basic notations

N is the set of all natural numbers.
7 is the set of all integers.
N, or Z, is the set of all non-negative integers.

n;m is the set of all integers X satisfying the inequality n<x<m.

Q is the set of all rational numbers.

R is the set of all real numbers.

R is the set of all real numbers extended by the symbols “—o0” and
“+o00”.

]RO is the set of all real numbers extended by the symbol o0 ”.

C is the set of all complex numbers.
(a;b) is an open interval, i.e., the set of all real numbers X satisfying the

inequality a<x<b.
[a;b] is a closed interval, i.e., the set of all real numbers X satisfying the
inequality a<x<b.
(a;b] is a half-open interval with the right endpoint included, i.e., the set

of all real numbers X satisfying a<x<b.
[a;b) is a half-open interval with the left endpoint included, i.e., the set of

all real numbers X satisfying a<x<b.
D(f) is the domain of a function f:H, - H,.

E(f) isthe range of a function f :H, —H,.
U(a; ¢) isthe &-neighborhood of the point a.

U (a;¢) is the punctured & -neighborhood of the point a .

?(x) «/_I f(t)e™dt is the Fourier transform of a function

f:R>C.
f(t)= Jl_ j f (x)e™dx is the inverse Fourier transform of a function

f:R>C.
f*(p(x)zj f(Xx—7)p(r)dz is the convolution of two functions

—o0

f:R—>Cand p:R—>C.
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M (r) =max{| f (2)|:|z| <r} is the maximum of the modulus of an entire
function f .

e (r)= max{| fi|r k> O} is the maximal term of an entire function f .

vi(r)= {k L (r) =| fk|rk} is the central index of an entire function f .

n(t) = Zl: max{k :|4 | <t} is the counting function of the sequence
| A<t

(&)

;
N(r)= det +n(0)Inr is the averaged counting function of the
0

sequence (4, ).
1-w, p=0,

E(w; p)= (l—w)exp[zp:wk/k], pel, is the Weierstrass primary
k=1

factor.

I f(rei‘g)‘
h (€)= lim 5 is the indicator function of an entire function f
r—-+oo r
of order p € (0;+x).
conv D is the convex hull of aset D C.
ko (0) =sup{Re(ze):ze D} is the supporting function of a set

DcC.

7. (2) = E nl:l" is the Borel transform of a function L(z) = I I L.z".
n=0

VA n=0

PWU2 is the set of all entire functions of exponential type <o < (0;+x0),
whose narrowing on R belongs to the space L, (RR).

HP(C,) is the class of functions holomorphic in the half-plane
C, ={z=x+iy:x>0}, for which |[f]=sup{|f(x+iy)|:x>0} <+,

if p=+0, and ||f||p:=sup{‘|.|f(x+iy)|pdy:x>0}<+oo for

p €[1;+c0).
S(R) is the space of rapidly decreasing functions.
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40.

C™)(R) is the set of infinitely differentiable functions ¢: R —C on R.
C)(R) is the set of all infinitely differentiable functions ¢:R —C
with compact support.
(CE(R))' is the space of generalized functions.
Ly oc (R) is the space of all locally integrable functions on R .
or 9%
A=—+—is the Laplace operator.
ox" oy
P is the end of a proof.
‘= is defined as.
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Preface

The ability to perform asymptotic estimates and investigate the basic
properties of various classes of functions is fundamental to the success of a
mathematician conducting research in any branch of mathematics, in particular,
in the theory of functions. The theory of functions has a multitude of
applications in calculus and functional analysis. This educational and
methodical manual explores the simplest methods for obtaining asymptotic
estimates of sum and integrals, finding the asymptotics of inverse functions and
roots of equations, the main properties of entire and subharmonic functions,
generalized functions and some other classes of functions. Many sections of
this manual contain problems with applications related to these topics.

The proposed guide is a revised and expanded edition of the manual
[2]. It includes lecture material, tasks for practical classes, individual tasks,
tasks for independent work, and modular control tasks. Key theoretical facts are
accompanied by solutions to a large number of typical examples.

To understand the text of the manual, you need to know the basics of
conventioanal courses on mathematical and complex analysis.

Designed for students specializing in 014 “Secondary Education
(Mathematics)” and 111 “Mathematics”.

Dedicated to the memory of Professor Bohdan V. Vynnyts 'kyi
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Chapter 1. Elementary asymptotic methods

1.1. O -symbolism. Landau symbols. Often, when considering both
theoretical and applied problems, it is necessary to compare one complex
function f with another or replace it with a simpler function ¢ on a certain

set E or in some neighborhood of a given point a, in order to obtain a clear
mathematical description of the corresponding problem. In this process, the
question arises as to which functions should be considered close. The answer to
this depends on the problem being considered.

Example 1. For large ne N, the functions

n, tel[0:1/n%],
f(t) = el ]
t, te[l/n*2],
and ¢@(t)=t are close on the segment [0;2] in the mean square sense,
because

2 V2 3 vz
d(f;0)=|f —¢|:= (ﬂf(‘[)—gp(t)|2 dt) :[ j (n—t)zdtJ =
0 0

_ 3\3 .3
:(n 1/n%)? —n 0.

However, it is difficult to call them close in the sup -norm, because
d(f;0)=|f —g:=sup{| f () —@(t) :t €[0;2]} =n —> +<0.
If a function f in the neighborhood of a point a is replaced by a
simpler function ¢, then |f(x)—¢(x)| and |(f(X)—¢(x))/ f (x)| are called

the absolute and relative errors, respectively. In solving such problems, certain
symbols (Landau symbols) are often used [4, 16, 27-29, 48, 53]:
1. The symbol « f (x) =0(1), x —a” means that lim f(x) =0.

X—a
2. The symbol “f(x)=o0(¢(x)), x—a” means that
limf(xX)/p(x)=0,ie, f(X)/p(x)=0(@1) as x—a.
X—a
3. The symbol “ f(x) =0(1), x —a” means that the function f is
bounded in some punctured neighborhood of a point a .
4. The symbol “ f(x) =O(¢(x)), x—>a” means that the function

f(X)/p(x) is bounded in some punctured neighborhood of a point a, i.e.,
f(X)/p(x)=0() as x—a.

13



5. The symbol * f (x) =(X), x—>a” means that f(x)=0O(¢p(x)) as
x—a and p(x)=0(f(x)) as x—a.

6. The symbol “ f(x) =O(1), xe E” means that the function f is
bounded onaset E .

7. The symbol “f(x)=O(¢(x)), xeE” means that
f(X)/p(x)=0(1) as xeE.

8. The symbol “ f (x) =@(x), x € E” means that f(x)=0(¢(x)) as
xeE,and p(x)=0(f(x)) as xeE.

9. The symbol “ f (x) ~ @(x) , X —a” means that le_r)rg1 f(x)/p(x)=1.

Equalities that involve Landau symbols are called asymptotic formulas
or asymptotic equalities. In such formulas, the symbol o(¢(x)) denotes any
function f from the considered class for which f(x) =0(¢(x)) as x—a, or

some specific such function [4, 16, 27-29, 48, 53]. A similar interpretation
applies to other symbols being considered. Thus, these symbols should be read
from left to right.

Example 2. tgx=0(@), Xx—>0; sinx~x, x—0; cosx=0(),
xelR.

Example 3. o()+0(@)=0(1) as x—>a (sum of two infinitesimally
small quantities is infinitesimally small).

Example 4. O()-o()=0(1) as x—a (product of a bounded
function and an infinitesimally small function is infinitesimally small).

Example 5. (1+o(1))(1+0(@)=1+0(@), x—>a.

Example 6. 1 =1+0(1), x—>a.
1+0()

Example 7. O(x?)+0(x) =o(x) =0o(1) , x—0.
Example 8.

X+003) +x2 +0(x?) =x+ x? +0(x?) =

=x+0(x?) =x+0(x) =x(1+0(1)), x—0.
Example 9.
x* +0(X) + X2 +0(x?) =x* + x* +0o(x?) =

=x*+0(x®) =x* +o(x") =x*(1+0(1), X —>oo.

Example 10. If l'ﬂ;' f(X)/ p(x)|<+o0, then f(x)=0O(p(x)) as
X—a.
14



Example 11. If lim|f(x)/@(x)|<+0, then f(x)=0O(p(x)) as
X—a

X—a.
Example 12. If 0<lim|f(x)/@(x)| <lim|f(x)/p(x)| <+, then
x—a X—a

f(X)Zp(x) as x—a.

Remark 1. Sometimes, the considered symbols are used in a slightly
more general sense.

If the functions f and ¢ are infinitesimal at the point a, and
f(x)=0(¢(x)) as x—a, then the infinitesimal f is said to be of a higher
order than the infinitesimal ¢ [4, 16, 27-29, 48, 53]. If the functions f and ¢
are infinitesimal at the point a, and f(X)z¢(x) as x—a, then the
infinitesimals f and ¢ are said to be of the same order at the point a . If the
functions f and ¢ are infinitesimal at the point a, and f(X)~@(x) as
X —a, then the infinitesimals f and ¢ are said to be equivalent [4, 16, 27-
29, 48, 53].

Example 13. An infinitesimal function f (x) = x> at the point a=0 is
of a higher order than the infinitesimal function ¢(x)=x" at the same point
because x* =0(x*) as x —»0.

Example 14. Infinitesimal functions f(x)=x? and ¢(x)=sin3x’ at
the point a=0 are of the same order.

Example 15. Infinitesimal functions f(x)=x> and ¢(x)=tg>x at

the point a=0 are equivalent.
Example 16. Infinitesimal functions

X, X € (0;+00), X, X € (0;+00),
p(x)=1 , _and p(x) =+, _
X, X € (—0;0), X, X € (—0;0),
at the point a=0 are incomparable in the sense that neither of them is of a
higher order than the other, they are not equivalent, and they are not of the

same order.
If the functions f and ¢ are infinitely large at the point a, and

f(x)=0(¢(x)) as x—a, then the infinitely large function ¢ is said to be of
a higher order than the infinitely large function f [4, 16, 27-29, 48, 53].
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Example 17. An infinitely large function ¢(x)=x* at the point a=oo
is of a higher order than the infinitely large function f(x)=x® at the same
point because x* =o(x*) as x > .

Example 18. An infinitely large function ¢(x)=€e®* at the point
a=-oo is of a higher order than the infinitely large function f (x)=x? at the

same point because x* =o0(e**) as x —+o.

1.2. Application of Taylor’s formula with remainder in Peano’s
form for calculating limits and asymptotic formulas. If a function
f:R—>R has a derivative of order neZ, at the point a€R, then the

Taylor formula with the remainder term in the Peano form can be expressed as
[4, 16, 27-29, 48, 53]:

(k)
f(x) = zf k(a)(x )< +o((x—a)") =
k=0 -

=Zw(x—a)k +0((x-a)™), x—a.
=0

k!
If all the terms ™) (a) =0 are infinitesimal at the point a, then in the sum
(k)
Z f kl(a) (x—a)* each subsequent term is of a higher order of infinitesimal
k=0

at the point a than the previous one. This formula is conveniently used for
finding limits and deriving various asymptotic formulas.
Example 1. We have the following expansions

Z—x +o(x") = Z—x +0(x"), x>0,
o k! o k!

ke
n 1k
Z( )

o k!

X +o(x“):2%xk +O(x""), x>0,
k=0 -

forevery neZ, .
Example 2. The following asymptotic equalities

n _1\k
SinX= ( 1) X2k+l 2n+2) Z ( 1) 2k+l+O(X2n+3), X—)O,

o (2k +1)! 0 (2k +1)!
2n+1 ( 1) 2n+2
COSX = z(Zk)' z(Zk)' +0O(x*"?), x>0,

arevalid forany neZ, .
Example 3. We have the following expansions
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n n
th 2k+l 2n+2 2k+1+o X2n+3 , X—)O,
kzo(Zk 1)I )= Z(2k +1)! ( )

n

=101
forevery neZ, .
Example 4. The following asymptotic formulas

In(L+x) = i D™ X +o(x") = Zn: D™
a Kk o K

n
chx X% +o(x*") = Z—x +0(x2"?), x>0,

0 (2k)!

n+1

x“ +0(x

), x—0,

n n
In(L— x) =—lek +o(x") = —zlxk +O(x"), x>0,
ik 1K
are valid forany neZ, .

Example 5. We have the expansion

k
) H(a—j+1)
A+X)* =1+ zlﬂka +o(x") =
k

:1+Z j=1 ” Xk +O(Xn+1), X—)O,

0
forevery neZ, and o € R, where H(a— j+1):=1. In particular,
j=L
1 4 k n q k n+1
—— = x+0(x") =D X +0(x""), x>0,
1-x % k=0
1
1+x
forevery neZ, .
Example 6. We can write the following asymptotic formulaas x —0:
3
sin X—L:x—x—+o(x3)—x(1—x+x2+o(x2))=
1+x 6
3

=—%+ x? +0(x%).

Zn:( H*x* +o(x") = Z( D*x +O(x"), x>0,

Example 7. We derive the following asymptotic formulaas x —>0:
In(L—x) —cosx + O(x®) +0(x?) =

17



X X
=X+ o(x?) —1+?+ o(x*) +O(x*) +0o(x*) =

=—x—1+0(x*) +O(x*) +0(x*) =—1— x +0(x?).
Example 8. We have the following asymptotic formulaas x —0:

In@+ X +0(x?)) = X + 0(x?) —%(x+o(x2))2 +o((x+o(x2))2):

1 2 2
=x—=x*+0(x?).
) (x%)

Example 9. If f(xX)=1-x+0(x) and ¢@(X)=1-2x+0(X) as
x—0, then f(p(x))=2x+0(X)+0(l—2x+0(X))=2x+0(1) as x—0.
Example 10. If me R, then (1+x)™ =1+ mx+0(x) as x—0, and

@+x)" —x"=x" {(l+1jm —1]:
X

=x" (1+%+0Gj—1} =mx" +o(x™?), Xx—>+o0.

When finding limits using the Taylor formula [4, 16, 27-29, 48, 53], it
is important to choose the order n wisely. It is preferable to choose n as small
as possible (if a certain n works in a given situation, any n larger than it will
also work, but not the other way around).

Example 11. For finding the limit

sin X — X

3

lim
x—0 X
we will use the Taylor formula
H 3 (_1)k 2k+1 2n+1
sinx=>Y ————x*"+0o(x*"), x>0,
o2k +D!

taking n=1. Then
3

X
X———+0(x*) = x

. sinx—x ..
lim =lim =
x—0 X3 x—0 X3
3
X
—€+o(x3) 1 1
=lim———= Iim[—— + 0(1)J =—=,
x—0 X x=>0\ 6 6

If we take n=2, then we again obtain the desired result:

18



lim

x—0

3

lim

5

x— 2+ X o) —x
sinx—x_ .~ 6 120

x—0 )(3 x—0
3 5

6 120 T
3 =lim

X o) [

X x—0

6

Example 12. Since

2 3

X3

2
_1+X_+0(X2) =_1
120 6

e* =1+x+x?+%+o(x3), x—0,

2 3

e =1-x+ X o), x—0,
2 6

3

sinx=x—%+o(x3), Xx—0,
we obtain
2 3 2 3
Tex+ o+ X o0d) - 1-x+ X =X o) |- 2x
e -e-2x . 2 6 2 6
Ilng - :Img 3
x>0 X—sinx x>
x—[x—)g+o(x3)J
3
o) fiow
o3 i 3
=lim— =lim =2.
x—=>0 X 3 x—0 1
2 1o(x®) E+0(1)
Example 13. Since
X3 3
X——+0(x")
6
1 sinx . In X
lim=In =lim =
x—0 X X x—0 X
X2
In 1—€+0(x2) X o)
=lim =lim _—I|mx(—+o(1)j=0,
x—0 X x—0 X
we have



When finding limits, the following Stolz theorem is often useful [4, 16,
27-29, 48, 53].
Example 14 (Stolz theorem). For any two sequences (x,) and (y,)
such that limy, =+ and y, -y, >0 forall n>n", holds:
Nn—o0

. X, —X . X = X = X, — X
“_m"—“—lgh_m_”g lim3 < lim & Snt
oo Yo =Ypa ey, MY, Y, —Yog

Example 15. For any sequence (u,,) that converges in Ro, we have

U Uy U,
lim2—2—"_""—limu,.

n—oo n n—oo

n
Indeed, if x, => u, and y, =n, then
k=1

X

U Uy .U xn—xn_l_u
yn n yn - yn—l
and by Stolz’s theorem, we get

U +Uy +...+U,

n?'

. X, X =X .
lim =lim =2 = lim "L = limu, .
nN—o0 n n—o0 yn n—o0 yn — yn—l nN—o0

n
Example 16. If x, =Y k* and y, =n", then by Stolz’s theorem, we

k=1
obtain
n
S .
= X . X =X ) n
lim &=L — = lim = = lim "L = |im — ==
n—w ) ooy ooy —y o noont —(n=1) 4

1.3. Order and type of a function. Let 77:[0;+00) — (0;+0) be a
non-decreasing function. The order of a function 7 is defined as the number
p = p[n], determined by the formula [16, 27-29, 48, 53]:

_ i Inn(®)

to+o Nt
In other words, the order of a function 7 is called the exact lower bound of

those numbers p, € (0;+0], for which (3¢, )(Vt e[L;+0)):77(t) <ct™), that
is, (3ty)(Vte[ty;+%)):n7(t)<t. The order of a function 7 is zero if and
only if [16, 27-29, 48, 53]

(¥, € (0;+90))(3ty € (0;+0) ) (VE 2ty ) 7 (t) <t
The order of a function 7 is +oo if and only if there exists a sequence (t,),
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0<t, T 400, such that [16, 27-29, 48, 53]
(Vo € (0;+90))(Tko € N) (Vk 2 ky )i 7(t ) 2ty
The order of a function 7 is equal to a number p e (0;+o0) if and only if two
conditions are satisfied: 1) (Vp, > p)(3t, € (0;+0))(Vt =ty ):p(t) <t”*; 2)
there exists a sequence (t, ), 0<t, T-+oo, such that [16, 27-29, 48, 53]
(Vp, < p)(Tko e N)(Vk 2k, ):77(t,) =

If pe(0;+) is the order of a function 7, then the number
o =o{n]=oln; p], defined by the formula [16, 27-29, 48, 53]

—n(r)

o= lim—=,
is called the type of a function n with respect to the order o . The type of a
function 7 with respect to the order p e (0;+00) is equal to zero if and only if
(Vo € (0;+00))(3ty € (0;+00) )(Vt =ty ) inp(t) < ot” .

Example 1. Let pe(0;+0), Le(0;40), ae(0;4+x) and
n(t)=at? +In(t+1). Then 7(t) =at’ @+0(1) and Inzn(t) = AA+0o(D)Int
as t —+o0. Therefore, p[n]=p4 and o[n]=«.

Example 2. Let z(t)=t”In(t+1), where SBe(0;4+w). Then
Inn(t) = SA+0(2))Int as t — +oo. Therefore, p[n]= /4 and ofn]=+x.

Example 3. If 7(t) — et , then Inz(t) =In?t. Therefore, p[r] =+

and of7n]=+o.
Example 4. If the function 77:[0;+0) — (0;400) is continuous on

[0;400), and for some S>—p the function t’n(t) is non-decreasing on

[L+0) and Jt’”’ln(t) <+oo, then 7(t) =0(t”) as t —-+oo. Indeed, we have
1

0« %dt Zxﬂn(x)j p+1ﬂ+1 dt > n(x) | x>+,
X t X t (p+ﬂ)x
Example 5 ([16, 27-29, 48, 53]). Let the function 77:[0;+0) — (0;+0)

X
is non-decreasing on [1;+w) and f(x) =J'77(t)d Int. Then
1
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f(x):f@dtsn(x)lnx, X € [L+0)

f(x)= f@dtzn(x/e), X € [1;+00) .
x/e

Therefore, In f(x) <Inzn(x)+Inlnx and p[ f]< p[n]. In addition,
In f(x) S In7(x/e) In(x/e)
Inx In(x/e) Inx
and o[ f]> p[r]. Hence, o[ f]= pln]. Further,
x?  (x/e)”
and ofn; ple™” <ol f;p]. Furtermore, if ofn; p]<+wo, then t™7n(t) <o,
for each o, > oln; p] and all t >t,. Thus,

() T o xX*
(0= T2dt+0@) <o, [t dt+0@) = 22 +0(1), x=1,.
%) t to p
Hence, ofn; ple” <ol f;pl<oln;pll p.
1.4. Slowly varying functions. A function @:R — R is called slowly

varying if [16, 27-29, 48, 53]

lim 240

t—>+0 a)(t)
for every c >0, moreover the limit exists uniformly with respect to ¢, on
every interval [a;b] = R. In addition, if the function @ is non-decreasing, then

it is called a slowly increasing function.
Example 1. The function @(t) =Int is slowly varying because

Inct Inc +Int
Int Int
uniformly with respect to ¢, e[a;b]. The functions w(t) =In’t, w(t)=InInt,

—last—+w

w(t) =arctgt, ot)=e"" and w(t)=e™", where a [0;1), are also slowly
varying. The functions o(t)=t, o)=+t, ot)=1/t*, ot)=¢,
w(t) = eV and o(t) = gt , are not slowly varying.

Example 2. Let the function w:R — R is differentiable on [0;+w)
and
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limte'(t)/ o(t)=0. 1)

t—+0
Then @ is a slowly varying function because, by Lagrange's theorem, we
obtain

o) ¢
uniformly in ¢, e[a;b], where & lies between t and C;t.
Example 3. If the function @w:R — R is continuously differentiable
In w(t)

-0, t—>+0,

Inow(ct) -

on [0;+0) and satisfies condition (1), then tIim " =0, because
—>+0 n
I Inw(0 Ia)(('[t)) .
a) !
tim 20) _ iy | 1nO) 5 im xZ®) _g.
x—>+0 [N X X—>+0 In x In x X—>+00 77()()

The class of slowly varying functions coincides with the set of
functions @ that can be represented in the form [16, 27-29, 48, 53]

Wt
(X) = exp{a)o(x) + J'WO—()dt} ,
% t
where X, €R, @, is a bounded measurable function, w, is a continuous

function, and
lim w,(x)=0, lim g,(X)=ceR.
X—>+0

Example 4. A positive measurable function @:R—>R is slowly
varying if and only if
(Vo e(O;D))(Va >3t (VE, >t)(VE, >t)):

1 . i
;w(tﬂ(tz ) °< o(t,) < ao(t)(t, /tl)é :
Example 5. A non-decreasing positive function @w:R — R is slowly
varying if and only if
(V6 € OD)(Ver >1)(E)(Vh > 1)(VE, 2 ) eofty) < aroolty ) (8, 11,)°
1.5. Proximate order. A proximate order is called [16, 27-29, 48, 53]
a continuously differentiable function o:R —[0;+00) on some interval

[Xy;40) , for which
tIim p(t) = p e[0;+x0), tIim to'(t)Int=0
Example 1. A constant function p(t) = €[0;+0) is a proximate
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order.
Example 2. A function p(t) = po+1/In(2+t) is a proximate order.

Example 3. If the function p:R — R is a proximate order, then the
function w(t) =t is slowly varying, because
to' () w(t) = p(t) — p+tpo'(t)Int.
Example 4. If pe[0;+0), the function @:R —(0;+0) is
continuously differentiable on [0;+w0) and tﬁrﬂota)'(t)/a)(t)=O, then the

P
function p(t) = M is a proximate order, because
n
|
pt)=p+ nla)ft) —>p, t—>+00,
n
and
tpint =2 W Ino® oy o

ao(t) Int
A proximate order p:[0;+00) —[0;+x) is called the proximate order
of a function 7:[0;+o0) — (0;+x) if [16, 27-29, 48, 53]

n(t)

o P p(t)

For every function 7 that has an order p € (0;+o0), there exists its proximate

order p:R—>R such that [16, 27-29, 48, 53]: a) lim p(t)=p; b)
t—>+0

Tim 2(r)

I’~>oor p(r)

IIm =0 €(0;+0) .

=0 €(0;+x); ¢) n((rz_a, r>r,; d 77/5(":3:6 on some
r n

n
sequence (r,), 0<r, T 40,

The proximate order p:[0;+00) —[0;4+w) is called the formal
proximate order of a function 7 [16, 27-29, 48, 53] if there exist numbers o,
and ¢, such that

nt)<ot’® +c , r>0. (1)
In this case, the number o is called the formal type of the function with
respect to the proximate order p:[0;+00) —[0;+), and the exact lower

bound o of all o, for which there exists a constant ¢, such that (1) holds is
called the type of the function n with respect to the formal proximate order
p:[0;+00) —[0;+00) , that is [16, 27-29, 48, 53]:
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Example 5. A constant function p(t) = p €[0;+00) is a proximate
order of the function 7(t) = 2t” +t*'2.

Example 6. A function p(t)=p+ Inint

nt is a proximate order of the
n

function n(t) =2t” Int +t”.

1.6. Integration and differentiation of asymptotic formulas.
Asymptotic equalities can generally be term-by-term integrated if natural
conditions are satisfied. The justification for the possibility of term-by-term
integration is based on the definitions of Landau symbols [16, 27-29, 48, 53].

Example 1 ([16, 27-29, 48, 53]). If the function f:R—>R is

continuous on [0;+x), a>-1 and f(t)~t* as t — -+, then

I f(t)dt ~
0

a+l

X
, X =400,
1

o+
Indeed, f(t)~t“ as t—+oo if and only if f(t)=t*+o(t”) as
t —+oo (here, the symbol o(t*) denotes some function 77: R — R such that
n(t)=o(t”) as t > +o0). Since
(Ve >0)(35 >0)(Vt=5):[o(t*)| <t
we have

a+l

<e , X=0.
1

a+

Jx'o(t“)dt

Thus, from the equality
X 5 X X X
J'f(t)dt :j f (t)dt+j f (t)dt 20(1)+jt“dt+jo(t“)dt =
0 0 ) o )

a+l X
=0(1) +~— + [o(t*)dt, xR,
a+l
we obtain
X Xa+1
j f(t)dt —2— = 0(x=™) , X —> +0.
5 a+1

From this it follows the required result.
Example 2. Let

25



t*, t>1 a<-1.

f(t)z{l, t <[0;1],

Then

a+l

1=0(1), X —>+00,

[fOdt=1, x21, =
0 o+

Thus, the relation considered in Example 1 is not correct.

Asymptotic formulas can generally be differentiated term-by-term only
when certain additional conditions are satisfied. The justification for the
possibility of term-by-term differentiation is a rather complex and little-studied
problem, which is related to Tauber’s theorems [16, 27-29, 48, 53].

Example 3. If f(t)=t+sint then f()~t as t—>+o0, and

f'(t) =1+cost. Therefore, the relation f'(t)~1, t— oo, does not hold.
Thus, the asymptotic equality f(t)~t as t-—-+oo, cannot, in general, be

differentiated term-by-term.
Example 4 ([16, 45, 47, 53]). Let AeR, pe(0;+0) and the

function f:R—>R be represented in the form f(x):jn(t)d Int, where
1

n:R—R is a non-decreasing and non-negative function on [1;+c0). Then,
the conditions
f(t)~At”, t >+, (1)
and
n(t) ~ pAt”, t >+, (2)
are equivalent.
Indeed, if condition (2) holds, then

f(x) ~pAItp’1dt ~AXP, X —>+0.
1
Conversely, let condition (1) hold. Then
R Tn() R
n(r)In—<f(R)- f(r):detsn(R)ln—, 0<r<R<+om.
r . r

Taking R=(1+)r where 6 >0, we obtain

< f(R)—f(r) Arp((1+ o)’ —1)+0(rp) ‘s
=" hRriny In(L+9) | '

Therefore
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A(@+06) -1)
In(1+9)
Hence, ¥ < pA. Similarly, taking r = R(1—-9) , we get

TR AR? ((1-8)” —1)+0(R")

y=limn(r)/r° <
r—-+o0

1R /iy = “In(—o) R
Thus
e A0
yl':RIL_Twn(R)/R Zw.
Tomy

7= lim n(R)/R” > Ap.

R—+o0

Hence, lim 7(r)/r” = pA, and we prove the required proposition.
r—-+o0

Example 5 ([16, 45, 47, 53]). Let the function f:R—>R be

represented in the form f(x) = J'n(t)d Int, where :R — R is a non-negative
1
and non-decreasing function on [1;+o0) . Then, the following conditions

w—)O,t—)ﬂD, 3
Int

and
n(t)—>0, t >+, (@)

are equivalent.
Indeed,if condition (4) is true, then

X
—glnx<j@dt<glnx
1

for every £>0 and all x> X, (&) . Therefore, condition (3) holds. Conversely,
assume that condition (3) holds. Suppose that (4) does not hold. Then,
n(t)>¢ forevery £ >0 andall t > x,(g). Therefore,

f(x):i@thO(l)Jrglnx

for all sufficiently large x, which contradicts condition (3).

27



Example 6 ([6, 16, 19]). Let A€[0;+x), pe(0;+0) and
t

f(x):jry(t)d Int, where 7:R — R is a monotonic function on [1;+x). In
1

order that for some p, €(0; p) holds
f(X) =AX” +0(x2), X —>+o0,
it is necessary and sufficient that for some p, € (0; p)
n(t) = pAt” +0o(t*), t —> +o0.

Indeed, the sufficiency is established by direct verification. Now, let’s prove the
necessity. Since

n(r)ln?s f(R)- f(r):?@dtgn(R)lng, 0<r<R <+,

then, puting R=r+r%, where 1+ p,—p<ax<l and
max{p, —a+1 p+a—1} < p < p,as r —+oo we obtain
Ar? ((L+ 1y =1)+o(r™?)
In(L+r*?)
Ar” (,or”“1 +O(r2(“’l)))+o(rp2) - N
= o= +O(r2("’1)) =Apr” +o(r’*).

Therefore, 7(r)< pAr” +o(r*) as r—+oo. On the other hand, taking

n(r) <

r=R-R%,as R— -+ we get
AR? (1-(1-R“?)?)+0(R?)
n(R) = — =
—In(1-R*™)
_ ApR? +O(R*™*) +0(R2™%)
1+O(R*™)
Thus, 17(R) < pAR” +0(R™) as R — oo, and the necessity is proved.

=ApR” +0o(R™).

Example 7. If f eC®[0;+0) and f'(x)+ f(x) >0 as X —>+wx,
then f(x) >0 and f'(X) >0 as X—>+oo. Indeed, let f'+ f =&. Then
£(X) >0 as x—+o0, and the function f is a solution of the equation
f'+ f =¢&. Solving the last equation by the method of variation of arbitrary
constants, we conclude that
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X
f(x)=ce™ +e™*[e(t)e'dt.
0

From here, by using, for example, L 'Hdpital’s rule, we obtain f(x)—0 as
X—+00. Thus, f'(x) >0 as X —+oo.

1.7. Estimation of zeros of functions and roots of equations. At
studying many problems, it is necessary to be able to investigate the existence
of zeros of a function, their multiplicity, and find them with sufficient accuracy.
A zero of a function f:R —R is called [3, 26] a number aeR such that

f(a)=0, i.e., a zero of the function f:R —R is a root of the equation
f(x)=0. A function f:R—R thatis m times continuously differentiable at
a point aeR is said to have a zero of order meN or a zero of multiplicity
me N if [3, 26]
f(a)=f'(a)=...=f ™Y (a)=0, f™(a)=0. (1)
A zero of order m=1 is called a simple zero.
Theorem 1 ([3, 26]). Let f be a polynomial of degree n and m<n.
Then, the following conditions are equivalent: 1) at the point aeR the
polynomial f has a zero of order m; 2) f(x)=(x—a)"g(x), where g isa

polynomial of degree n—m and g(a)=0; 3) f(x)= ibk (x—a)*, where
k=m
b, #0.

Example 1. A polynomial f(x) = (x+2)*(x—5) of degree n=5 has a
zero of order m=4 at a point a =—2 ana zero of order m=1 at a point
a, =5.

Remark 1. According to the fundamental theorem of algebra, every
polynomial of degree n has at most n real zeros (and exactly n complex

zeros, counting each zero according to its multiplicity).
If a function f :[a;b] > R is continuous on a interval [a;b] and takes

values of opposite signs at the endpoints of the interval, then by the Bolzano-
Cauchy theorem [4], the equation f(x) =0 has at least one root on [a;b]. The

question is how to find this root with sufficient accuracy. There are several
methods for this. Before choosing a specific approximation method, it is
important to determine how many roots the equation has, find the multiplicity
of each root, and identify the intervals that contain exactly one root [4, 16].

Example 2. The function f(x)=x>+x+1 is continuous on R,

lim f(X)=+400, lim f(x)=—0 and f'(xX)=3x*+1. Therefore, this
X—>+30 X—>—00
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function is increasing on R . Hence, the equation x*+Xx+1=0 has a unique
real root. In addition, f"(x)=6x and f(0)=1=0. Thus, the root is simple.
Since f(-1)=-1<0 and f(0)=1>0, then the root lies within the interval
(-L0).

Example 3. Let’s find the values of aeR for which the equation
x> —3ax’* +3a°x—1=0 has real roots of multiplicity m>2 Let
f(x)=x*—3ax? +3a’x—1. Then f'(x)=3x*-6ax+3a®. If such a acR
exists, then the system {:’((;(()): % is consistent, meaning the system

x® —3ax® +3a’x-1=0,
{ 3x® —6ax+3a” =0.

From the second equation, we obtain x=a and, therefore,
a®—3aa®+3a%a—-1=0. Hence, a=1 and f(x)=(x-1)°. Thus, we
conclude that the equation has real roots only in the case a=1 and in this
case, the equation has exactly one real root x =1 of multiplicity m=3.

Example 4. Let f(x)=x>—3ax+1. Then, this function is a

continuous on R, lim f(x)=+w, lim f(x)=—c and f'(x)=3x*-3a.

li
X—>+00
Thus, the equation x* —3ax+1=0 has at least one real root. If a<0, then

the function is increasing, and therefore it has exactly one real root.
1.8. Asymptotics of inverse functions and roots of equations. To

find the formula y = f *(x) that defines the function f ':R — R inverse to
the function f:R-—>R, one needs to solve the equation y=f(x) to

x = f *(y) and then interchange x and y. As a result, the desired formula is
obtained. This process involves using known identities such as f *(f (x)) =,

xeD(f) and f(f*(y)=y, yeE(f). However, solving the equation
y=f(x) is often challenging. For this reason, in many cases, it is more

practical to find an asymptotic formula [4, 16, 27-29, 48, 53]. A similar
approach is used when solving equations f (x)=a. If such an equation has an
infinite number of roots, it is often possible to represent the set R as a union of
a countable number of pairwise disjoint intervals, within each of which the
function f is invertible. Then, one can determine the asymptotics of the roots
belonging to the considered intervals.

Example 1. If f(x)=4x-8, then we have the equation y=4x-8,
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from which it follows that x:%y+2. Therefore, f‘l(x)=%x+2 and

y= % X+ 2 the desired formula.

Example 2. The function f(x)=3x+\ﬁ is increasing and
continuous on the interval (0;+<0) . Therefore, it has an inverse function f*

and fi(y)>+0 a y-—+wo. In  addiion, we have

fOEL(y) =3 2(y)+ F2(y). Thus, y=3@1+0@)f(y) as y—»-+wo,
and f1(x)=1+0()x/3 as X —+w.

Example 3. If f:R—>R and ¢:R—>R are two invertible
functions, f(x)=(1+0())@(x) as x—0 and ¢ *(y)=0(1) as y —0, then

f(y) =9 (A+0(D)y) as y 0.
Indeed, x=¢'(y)—>0 as y—0. Therefore, we have

fl@™ () =L+o@)e(p(y) and f(p™ () =@+oD)y as y—0.1In
particular, if f(x)=(l+o())x as x—0, then fH(x)=@1+o@)x as
x—0.
Example 4. If the function f :(0;1) — R is invertible and
f(x)=ax+bx? +0(x?), x>0,

then f(x)=@Q+o@)ax, if a=#0 and x—>+0. Therefore
f1x)=(l+o()x/a as x—>+0. If a=0 and b=0, then
f(X) = (L+0@)bx? and f 1(x)=(1+o@)\/Xx/b as x —+0.

Example 5 ([16]). The function f(x)=x+Inx is increasing and
continuous on (0;+o0) . Therefore, it has an inverse function. In this case,
f(X) >+ asx—>+00, and f(X) >—o0 as x—>0+. To find the inverse
function, we consider the equation y =X+ Inx. Solving this equation explicitly
might be challenging or even impossible. However,

f1(x)=@+o@)x, X —>+o0,
f1(X)=x—Inx+0(1), X —>+o,
fl(x):x—lnx+|n—x+o(ln—x), X —>+00,
X X
We derive these asymptotic formulas as follows:
y=x+Inx, y=1+0o@)x,x=1+0@Q)y, y >+x0;
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X=y-Inx=y-Inl+o0@)y=y—-Iny+0o@Q), y >+x;

x=y—Inx=y—In(y—Iny+o(1))=y_|n(y_|ny)+|n(1+ o) ):

y—Iny
=y—In y—In(l—In—yan(Hﬂ]:
y y—=Iny

=y—Iny+|n—y+o[|n—yj, y —+00;
y y

The asymptotic formulas
f—l(x):ex+0(l)' X —> —00,
f1(x)=¢* +O(e2x), X ——0,
are obtained as follows:
y=x+Inx, y=Inx+0(l), x=e"°®  y 5 o0
+0(1) +o(1)
e ey =ey(1+0(ey)):ey+0(ezy), y ——0.

Hence, if x=x(y) is a solution of the equation Xx+Inx=y, then

x=e""=

x=y—-Iny+o(l) as y —> -+, and x:ey+0(e2y) as y—>-—o.

Example 6 ([16]). Let x, be the root of the equation tgx=1/x,
which lies in the interval (—7z/2+7zn;z/2+zn). From geometric
considerations, it follows that for n>2 on this interval the considered
equation has a unique root X,=zn+A,, A,e(-x/2;7/2). Besides,

tgA, :i, A, = arctgi and x, =zn +arctgi. Hence, x, =zn+o0(1) as
X

n Xn Xn
n — +oo. But arctgx:x+o(x2) as X —0. Thus,

1 1 1 1 1
Xn=7m+—1+0 — :7m+——1+o = |=
zn+o(1) n 7zn1+0( j n

2
zn n
1.9. Asymptotics of integrals with a variable upper limit. To find

the asymptotics of the integral [5, 16, 27-29, 48, 53]

)
=7aN+—+0| — |, N—+0.
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i f)dt=@Q+o))n(x), x—a,

the search for the function 7 can be carried out using the trial and error

method with the application of L’Hopital’s rules or other techniques.
Example 1. The asymptotic equality

X et ex
[=dt=@+0®)= as x>+,
1t X

is fulfilled, because

Example 2. Forany ¢ e R, x#>-1 and ¢ >0, the following holds:

je u“du = o[ljas X —> 400,

&X X
because
+00 +0 '
I e 'u“du I e u“du )
. B
lim 2 — Jim & _jim Z2 07
X—>+o0 1 X400 1Y X0 X @t '
Xt (x“]

Example 3 ([16]). If the function h:R —R is twice continuously
differentiable on [0;+00), h(Xx) —+o and h"(x):o(h'z(x)) as X—+o0,

then
j e MOt = (L4 o) e, X > 400,
h(x)

In fact,

h(X) ( )

—¢ <Inh'(x)<—=+¢;, ¢, >0.

Therefore,
o0 +oo —h(t)
J e "Odt = J. e dh(® < +o0
h'(t)

0
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and
—h(x)
e
——— >0, X—>+00.
h'(x)

Thus

[ e 0dt 2
lim h'<(x)
Im Th() 2 oy
X—>+0 @ X—>+o N (X) +h (X)
h'(x)
1.10. Asymptotics of sums. The asymptotics of sums

Za(k) Z a(k),

k=n+1
can be found by comparing them W|th mtegrals

j a(t)dt, j a(t)dt,
n+l
expressing the sum in the form of a Stieltjes integral, using the Stolz theorem,
and applying other methods [5, 16, 27-29, 48, 53].
Example 1 ([16]). Let a function a:(0;+wc) —[0;4+00) be non-
decresing on (0;-+0) . Then
k+1
a(k) < j at)dt<a(k +1).

k

Therefore,
n—1 k+1
Za(k) a(n)+za(k)<a(n)+z j a(t)dt =a(n) + j a(t)dt ,
k=1 g
za(k) a(l) + Za(k +1)>a(l) + nzlkfa(t)olt =a(l)+ j a(t)dt.
k=1 g
Thus,

Zn:a(k) - jla(t)dt +0@)+0(a(n)), n—o.
k=1 1

If the function a: (0;+w) —[0;+w0) is non-increasing on (0;+w0) , then
k+1
a(k+1)< [ at)dt<a(k).
k
Therefore,
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n—1 k+1

Zn:a(k) a(1)+za(k +h<a@®)+). [ at)dt=a()+ j a(t)dt,

k=1 k=1 k
Zn:a(k) a(n)+ Za(k) >a(n)+ ikfa(t)dt =a(n)+ ja(t)dt
k=1 g

Hence, |f the function a: (0 +00) —[0;+0) is monotonic, then

Za(k) Ia(t)dt+O(1)+O(a(n)) n—o.

k=1
Example 2 ([16]). Slnce

n

n
Zn:%<l+f%dt=1+lnn, Zn:%>l+jtdt=—+lnn

k=1 1 kKN
we have
n1 %1
Y= =[dt+0@W)=Inn+0(1), n—>o.
k:lk 1t
More precise estimates can be obtained. In particular, there exists a limit:
. 21 (1 1
=lim =—Inn|= =—In|1+=|[. 1
L I G
Further,
n
Zi—lnn—y(,:ﬂ,ewnd, n>1. )
i K n
Indeed,

> L-inn i(——ln(u m+ilnk—+1—|nn—

k=1 k=1

Zn:(——ln[u iDJrlnnTH

From this it follows (1). In addition,
S, 1—Inn—yozln(1+lj— Z(l—ln(lJrlD.
i K n) (Salk k

1 1 1 1 ( 1) 1 1
< ——<=-In|l+=|<—<—"F—|
2k(2k +1)  2k? 3k Kk k 2k (2k —

Since




1

1 1) 1 1
—<Infl+= |<=———F—,
n 2n(2n-1) n) n 2n(2n+1)
we have

1 1 1 1 1 1
—— - <S, <—— - ,
n {2n(2n-1) 2n+1 n {2n(2n+1) 2n-1

from which we obtain (2). The constant y, = In\/ﬂz 0,57... is called Euler’s
constant.

Example 3 ([16]). Let the function a:(0;+w) —[0;+) be non-
increasing on (0;+c0) . Then

a(k +1) < thla(t)dt <a(k).

k

Consequently,

S a(k) = Za(k 1)< ikfa(t)dt - Ta(t)dt

S =

Z a(k) ——a(n)+2a(k) >—a(n)+ ikjtla(t)dt =—a(n) + j a(t)dt .

Thuks,n+l o

3 a(k):Ta(t)dHO(a(n)), o0
In particular, - n

k;klg_j L dt+omn? )—T+O(1/n) oo,

zeﬁ =jeﬁdt+0(e\ﬁ) =2(L+o@)Vne'™, n oo,

k=1 1
n-1
Example 4 ([16]). Let x,=> k“q“, y,=n’g" with g>1 and
k=0
acR.Then y, =+, X, =X, , =(n-1)“q"",

Yo — You =n“q"—(n-1)*q"* =

=n“q" {1—[1—%)a /qj =n“q" " (q-1)(1+0(1)) = +o.
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as n—oo. Further, M=i1(1+0(1)) as n—oo, and by Stolz’s

yn - yn—l q-

theorem, we get Zo _ il(l+ o(1)) as n—»oo. Furthermore,
yn q-
n-1 naqn
> k“q" =—1(1+ 0(1)), n—>wo.
q —

k=0

Example 5 ([16]). We prove that Ze”ﬁ=2(1+o(1))\/’ﬁe”¢/ﬁ
k=n

n—co. Indeed, let x —Ze and y, =vne™". Then

k=n
Xn - Xn—l = _ei\m’ yn - yn—l = %e*ﬁ —/n _Rim
Xy — X _ —€ _ -1 _
Yo = Yna \/ﬁeﬂﬁ —4/n e \/_[ NN n —1J
n|e N
n
— _1 —
= — =
\/ﬁ{e =R ,1_1}
n
-1
=2(1+0(1),

_x/_ +o( ! j 1+1+o(1j
N +\/_ Jn 2n n
as n— . Hence, according to the Stolz theorem, we obtain
X
L =2(1+0(@), n—>w.
n

1.11. Asymptotic estimates of some parameter-dependent
integrals. Asymptotic estimates of many integrals

1(x) = .?n(t)e‘xs(‘)dt

and others can be found through integration by parts. In more complex cases, it
is advisable to use Laplace’s method [5, 16, 27-29, 48, 53]. The main idea of
Laplace’s method is that for a given function S, which has one minimum point
t, on an interval [a;b], for large positive values X, the integrand has a large

maximum at this point t,, and therefore, this integral differs little from its
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integral over a small neighborhood A, of the point t,. The latter integral, in
turn, differs little from

n(t)e ™ [ dt,

AX
more precise, from the contribution of the point t, itself. The justification of

these two moments constitutes the essence of Laplace’s method. With a
suitable substitution in the integration variable, similar methods can be used to
find the asymptotics of other types of integrals. When applying this method, the
Gamma function [5, 16, 27-29, 48]

r(x) = [ et*dt
0
and some of its properties such as T'(1+Xx)=xI'(x), T'(l+n)=nl!,
r(1/2)= J e 't ™V2dt = ZJ. e’ du =7 , are often used.
0 0

Example 1. For any x#>-1 and x>0, we have

[ et dt = w .
0

X +1
In particular,
+o0 1
_[e“xdtz—, x>0.
5 X
Example 2. Forany 6 >0, u#>-1 and « >0, the following holds:
+00
J'e’txt”dtzo(ll X?) as X —>+o0.
5
Indeed,
+o0 +oo +00
[etidt= e Pt dt <e 0P [etudt,
5 ) 5

if x>1 and e =0(1/x*) as X —+o0.
Example 3. For any £ >0 holds

je’“dtz je’t"dt— J' et =2 Loox =1+o(1j as X —>+o0,
! ! ) X X X X

Example 4. For any ¢ € R and £ >0, we have
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£ & 1 £ 1 &£
je‘“tdt __Len] o —je“xdt - —[—ge‘gx + je“xdtJ =
0 X g Xy X 0

1/1 1 1 1
=—| —+0| — =—2+0 — as X —+o0,
X\ X X X X

Example 5. Forany ¢ e R, x#>-1 and ¢ >0, the following holds:

& +00 +00 1 +00 +00
[etrdt=[et“dt— [e™t“dt=—7 [eu du— [ et dt=
0 0 £ X 0 £

p+l pu+l u+l
X X X4l

=r<lu+l)+0( L ) as X —+o0,

NG X
Example 6 ([16, 27-29, 48]). Let the function 77:[0;+00) > R satisfy

the following conditions: 1) it is continuous on the interval [0;+o0) ; 2) there

_ e+ J’e—txt#dtZM_ 1 Ie_“u”dU=

qt

exists a constant ¢, such that |77(t)| < c,e™ for t[0;+0) ; 3) the function 7

can be expanded into uniformly convergent series 77(t)=2dktk on some
k=0

interval [0; ], where £>0. Then, for any & >-1 and neZ, holds

J‘e’“t"‘n(t)dtzzdk [k+a+1) +O( n+1a+1) as X —>+o0.
0 k=0 X

kK+a+1

X

Indeed,
Ie’txt“n(t)dtz j e %t (t)dt + j e %t%p(t)dt .
0 0 &

In this case,

[ e t“n(tydt

+00 +o0
SCl J‘ e—t(x—ZCl)tae—tcldt Scle—g(x—ch) J‘tae—tcldL
Therefore,

+o0 1

J. eitxtan(t)dt = O(Wj , X—>+00,

Further,
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J‘e—txtazd t dt—Zd J‘e—txtmkdt Zd J‘e—txta+kdt+o( n}a+lj_

k=0
n
ST o 1)
k=0 X
Furthermore,
n
tn(t) -t > d t =0(t"™**), te[0;e].
k=0
Hence,

£X
-u,  n+l+a
n+2+a _[e u du.

j e %tp(t)dt — je‘“t det dt
X 0

Example 7. For x>0, we have

Te‘tzxdt_f:[oe‘“ du = \FX

—00

Example 8. For any £ € R holds
t e z 1
e Mdt=, |~ +o(—]
Jero= 5ol

£ 2 & 2 82 +00 —+00
J' e Xt = 2J'e’t Xdt = je’”*u’“zdu - J' uY2%e™du — j uY2%edu =
- 0 0 0 2

< Czje_txtn+1+adt _

as X — o0, because

_rdrz_ 1 I v Y% Vdy .

NS
1.12. Self-control questions.

1. Explain the meaning of the symbols: a) “ f(x)=0(), x—a”; b)
“f(X)=0(p(x)), x—>a”;c)“f(x)=0@Q), x—>a”; d) “f(x)=0(e(x)),
x—>a”; e “f(X)Ze(x), x—a” ) “f(x)=0@1), xeE~” 0
“f(x)=0(p(x)), xeE”;hy* f(x) ~p(x), x—>a”.
2. Formulate the definition of the order of a function.
3. Formulate the definition of the type of a function.
4. Formulate the definition of a slowly varying function.
5. Formulate the definition of a slowly increasing function.
6. Formulate the definition of a proximate order.

7. What are the main methods used for finding the asymptotics of integrals with
a variable upper bound and the asymptotics of sums?
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8. Formulate the Stolz theorem.
9. What is the essence of Laplace’s method?
1.13. Exercises and problems.
1. Determine whether the following statements are true:

1. sin(x+0(x?))=x+0(x?), x—0.
2. cos(x+o(x2))=1—%x2+o(x2), x—0.

sin(x+0(x?)) = x+0(x?), x—0.
tg(x+0(x?)) =x+0(x?), x—0.
(1+x)°> =0(x°), X >o0.
Inx=0(x"), Xx—>+w0, a<0.
Inx=0(x%), X —>+0.

Inx=0(x?), x—>0+.

© © N o o0 A~ W

x0(x) =0(x?), x—0.
10. x®0(1/x) =0(x?), x> 0.
11. x* +0(X) =O(x?) , X > .
12. o(O(x)) =0(x), x—>0.
13. 0(x?) +O(x®) =0(x*), x—0.
2. Find a number c, such that f(x)=c,(x—a)" +o((x—a)") as x—>a
and meZ, :
f(x)=sin(cosx), a=0.
f(x) =cos(sinx), a=0.
f(x) =sin(tg® x), a=0.
f(x)=tg?(sinx), a=0.
f(x)=sin(Incosx), a=0.
f (x) = cos(arcsin®x), a=0.
f (x) =arcsin®(tgx), a=0.
f (x) =tg?(arccosx), a=0.

© © N o gk w DNhE

. f(x) =arcsin?(x+x* +0(x?)), a=0.
10. f(x)=tg?(x+0O(x%)), a=0.
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3. Determine whether the following asymptotic formulas f(2x)~ f(x),
f(xX)=0(f(2x)), f(x+1) ~ f(x) and f(x)=o0(f(x+1)) are valid as
X—>+00:

f(x)=x.

f(x)=x?.

f(x)=e'.

f(x)=e?*.

f(x)=Inx.

f(x)=InInx.

f(x)=In%x.

f(x)=+/Inx.

f(x)=3x.

f(x)=In"x, peR.

. f(X)=In’In%x, p,qeR.

f(x)=e"™ peR.

f(x)=e"*, peR.

f(x)=e".

15. f(x)=e* .
4. Prove that the equation has a unique real root:
1. x3"=1.

© © N ook w DN e

N i =
> w dpD P O

2. x—lsinx:fz.
2

3. xB+7x*-5=0.
4, 3 +4% =5,
5. 2¢* + x> +18x—6=0.

5. Prove the following statements [4, 5, 16, 27-29, 48, 53]:
1. The equation X°+x*+x*+10x—5=0 has a unique positive root
lying in the interval (0;1/2) .
2. The equation xarcsinx=0 has a unique real root x=0 of
multiplicity m=2.
3. If the function f:R — R has a derivative on the interval (—oo;+c0),
then between two distinct zeros of the function f there lies at least one
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zero of its derivative f'.

4. The equation xe* =2 has a unique positive root lying in the interval
0;2).

5. If ae(l;+0) then the equation a* =ax has two real roots.

6. The equation a* =bx has two real roots if a < (1;+w) and b>elna.
7. The equation a* =bx has no real roots if elna>b>0.

8. The equation a* =bx has a unique real root if a e (;+w) and b>0.
9. The equation xInx=a has no real roots if a e (—o0;—1/€).

10. The equation xInx=a has a unique real root of multiplicity m=2 if
a=-1/e.

11. The equation xInx=a has two simple roots if a €(-1/¢;0).

12. The equation XInx=a has a unique real root if a € (0;+o0) .

10.

11.

Find a function ¢ such that for the solution x=x(y) of the equation
x+e* =y holds x=¢(y)+0(1) as y —>+oo.

Find a function ¢ such that for the solution x=x(y) of the equation
xe* =y holds x=¢(y)+0(1) as y —>+oo.

Let x, be a root of the equation sinzx=1/x lying in the intervals
(2k;1/2+2k) , k e N. Prove that:

Xoi =2k+i+o(i2j as kK — +oo.
27k k

Let X,., be a root of the equation sinzx=1/x lying in the intervals
@/2+2k;2(k+1), k eN. Prove that:

Xory = 2K +1— ij as k — +o0.

————+0
2k +)x (kz
Let (x,) with x <X, <..., be a sequence of positive solutions of the
equation tg x = x. Prove that:
X, =(2n—1)%+0[1j as N —+oo,
n

Determine the order and type of the function 7 :

1L p(x)=4x®+In(5+Xx).

2. n(x)=In(l+e*).

3. n(x)=In(x+e*).
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n(x) =In(x +e”*) + In(L+ x°)..
7(X) =X + In(¢ +5x%) .
n(x) =In(x® +e%).

n(x) = In(L+e*") .

n(x) =xIn(l+x7Y?).

© © N o g &

n(x) =xIn(l+x?) In(L+x¥?) .

10. n(x) = xln(1+

1
Inl+x) )
11. 7(x) =4x° + xIn(L+¢€*) .
12. Prove the asymptotic formulas if the function f:[0;+00) >R s

continuous on [0;4w) and f(x) ~x% as X —+o0:

a+l

¢ X
1. f (t)dt ~
-([ © a+l

, X—>+00, a>-1.

2. [f(H)dt=0@1), x>+0, a<-1.
0
3. [fO)dt~Inx, x>+, a=-1.
0
+o0 Xa+1
a. [ f(t)dt~- , X—>+00, o<1,
" o+

13. Prove that if the function ¢:[0;+00)— (0;+00) is continuously
differentiable on [0;+00) and x¢'(x) =0(¢(x)) as x —+o0, then:

1. j¢(t)t“‘1dt~£x“¢(x), X—+400, a>0.
(24
0

+0 1
2. [ ot tdt~—=x“p(x), x>+, a<0.
(24
X
14. Prove the asymptotic formulas:

X At X X
1. Ie—dtze—+0(e j X —>+00.,

X2
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n
3. Zklnk~1nzlnn, n—o.
k=1 2

4. Z\/Fe’ﬁ~2ne”ﬁ, n—o.
k=n
X 2

5. jx3/1+t3dt=X?+O(l), X —>+0.
0

6. jlnztdtzo(xln2 x), X—>0+.
0

n n3
7. Zkz ~—, N—o0,

o) 3
1.14. Individual tasks.

1. Prove that:
1. e*~1+x, x—0.
2. e+ x> =0("), xe[0;+x).

9.

10.

.1
.xsm;_0(|x|), Xx—0.

arctg x :O( 1

1+x° 2

) xsee.
X

x3

. Jsintzzo(x), x—>0.
2

. xfx+«ix+«/_~§/;, X—0.

X% +xIn
. Inl+2x)=x, x—>0.

100y %2, X —>+00.

In(1+sin[2—i(D:x, Xx—0.
e

1+ x2 —x=0(1j, X —> +00.,
X

11. xsinx =0(x*?), x—>0.

12. arctgl =0(@), x—0.
X

13. @+x)" =1+nx+0(x), x—0.
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14. x+x?sinx=0(x?), X —>+o0.
15. Inx=0(x%), X >+, a>0.
16. InInx=0(InX), X —>+o0.

17. 2x+Inx+sinx=0(X), X —>+x.

18. \/x2+x+1—x~%, X —> +00.,

1 1 1 1
19—+—3+—5=O[;

) xosn
X X X

20. e¥ —e=e(x-1)+0(x-1), x—>1.

21, 1+ x —J1-x=x+0(x), x—0.

2x° ) )
22, 4————=2X"+0(X"), X—>+00.
X" =3x+1

23. X%+ +/x° =0(x), X — +o0.

24. 5" =1+x+%x2+o(x2), Xx—0.

25. arctgx:x—%x3+o(x3), Xx—0.

26. €9 =1+ x+0(x), Xx—0.

27, X =o(1j, X —> 420,
1+x X

28. shx=0(e"), X —>+w.

29. Inx=0(x""), x>0+, a>0.

30. n!~+/27zne "n", n > oo.

2. Compare the infinitesimal functions f and ¢ at a given point a and

determine whether they are equivalent, of the same order, whether one is of
higher order than the other, or whether they are incomparable:

1 f(x)=e"—e*, p(x)=x3, a=0.
2
2. f(x):x—sinx,(p(x):e"—1—x—X?, a=0.

3. f(X)=x"—x, p(X)=(x-1)?, a=1.
4. f(X)=40-x")-501-x°), p(x)=(1-x)?, a=1.
5. f(X)=Inx—x+1, p(X)=(x-DInx, a=1.
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9.

10.

11.

12.

13.

14.
15.
16.

17.
18.

19.

20.

21.
22.
23.
24.

25.
26.
27.
28.

f(X)=2"-x*, p(X)=x—-2, a=2.
f(x)=1-1+x? cosx, o(x)=sin*x, a=0.

X212

f(x)=cosx—e "2, p(x)=x*, a=0.

f (X) =arcsin 2x — 2arcsin x,, (p(x) =x% a=0.

f(x)= ——tg =, p(X)=—, a=+.

x2 x3

f(X)=eX—1—X—?—E, p(x)=x*, a=0.

T 1
f(x)==-arctgyx, o(X)=—, a
(0)=3 g%, p(x) Nes
X X3 4
f(x)=e"-1-x——-"—, p(x)=x", a=0.
(X) > 6 »(X)

f(x)=sin2x?, p(x)=x*, a=0.
f(X)=x—-tgx, p(x)=x*, a=0.

f(x) =Jr —farccosx, p(x)=+/x+1, a=-1.
f(x)=e" —e™, p(x)=In(l+x?), a=0.
f(X)=x"—x, p(x)=(x-1?, a=

F()=

=40,

1
: =—, a=+40.
+1 X

f(x) =€ —Z— p(x)=x%, a=0.
f(x):arcsm2x—sm2x, p(X)=x*+In(1+3x), a=0.
f(x) =cos3x—cosx, p(x)=x?,a=0.

f(x)=v9-x-3, p(x)=x, a=0.
f(x)=tgx—sinx, p(x)=x3, a=0.
f(x)=In+x%), p(x) =cosx—e™*, a=0.
f(X)=x—@+x)IN1+X), o(x)=x*(1+X), a=0.
f(x)=x*-3", p(x)=x-3, a=3.
f(X)=1-xHN1-x), p(x)=(1-x)*, a=
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29. f(x)=e*+e -2, p(x)=x%, a=0.
30. f(x)=x>-3, p(x)=(x-3)?, a=
3. Find the numbers a; for which the asymptotic formulas are valid:

1L X —1=a(x-1)+a,(x-1)° +a,(x—1)° +o((x—1)3) , X—1.

2, Ie‘xsintdt_5+%+o(12) X —> 400 .
5 X X X
xX* =X

3. ——==a,+a(x-1)+o(x-1), x—>1.
(x-1)°

4, J.e‘tx(1+t)1°dt=ﬁ+i+o 1 , X —> 40,
0 x x* X

5. Insinx=a, +a,(x—7/2)+a,(x—7/2)* +a,(x—712)°+
+a4(x—7r/2)4+o((x—;z/2)4), X—>l2.
6. Ie‘XJlet_—+—+o( 1} X —> +00.
X X
sinx
S 1-2x

+o0
. je"" 1+t2dt_i+ﬁ+o(1J X —> 0.,
: X X X

=a, +aX+a,x> +0(x%), x—0.

[o0]

9. sin(sinx) = a, + a,x+a,x* +0(x?), x—0.

10. je‘xidt=&+ﬁ+a—+o(lj X —> +00.
0 1+t x x* x X

11. In(1+sinx)=a, +ax+0(x), X —>0.

12. je‘x%dt=i+%+o(%) X —> 40,
0 @+t) X X X
tg

13. tgx =a, +aX+a,x* +o(x*), x—>0.

1 1
14. arctgx=a, +a,—+0[ = |, X >+o0.
X X

1 1
15. arctgx=a, +a,—+0[ = |, X >—0.
X X
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16. arcsinx =a, +a (X —1) +a,(x-1)* +o((x-1)?), x >1—.

17. ZL =a, +a (L+x)+a, L+ x)* +o(d+Xx)?), x—>-1.
J’_

18. €™ =a, +ax+0(Xx), Xx—0.
19. sin(x* -2x+3) =38, +a(x-1)+0(x-1), x—>-1.

20.1—_a0+a1(x D+o(x-1), x—>1.
+
1-3x
21. 5 _a0+a1(1+x)+a2(1+x) +0O((1+x)*), x—>-1.
+
COS X ) 3
22. =a,+aX+a,x +0(x’), x—0.
1+ 2x 8 +& 2 (x°)
2
23. (11+—X):a0+a1x+a2x2+o(x2), x—0.
24. cos(X* +x—1)=a, +a (x-1) +a,(x-1)*+o((x-1)?), x>1.
X_
25. i 1=a0+a1x+a2x2+o(x2), x—0.
- X
26. sin(In(1+x)) =a, +ax+0(x), x—>0.
2
27. 1+X—+X2=a0+a1x+a2x2+o(x2), x—0.
1-x+X
28.1X —ay+a(x—1) +a,(x—1)2 +0o(x~1)?), x —>1.
+
COS X

29. =ay +ax+a,x* +0(x*), x—>0.

1+2x
30. In(L+2x) =a, + a X+ a,x* +a;x> +a,x* +O(x*), x—>0.

4. Justify the asymptotic formulas:
2

X t2 eX
1. |e dt~—, X—>+o0.
2X

+o0 e e
2, fe dt ~
2X
2

2”7 2“ N>,

, X —> 40,
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12.

13.

14.

15.

16.

17.

18

n 1 3n2/3

3~ y N— 0
ékl/:*» 2
n1
Z—~2\/ﬁ, n—oo
vk
+0
ot I o L) s
? X X
Jsmtdt_smero(izj, s ton
ot X
X X2 X X2
jetzdtze——e ~+0 e_2 . X —>+0
1 2X  4x X
Xet eX eX eX
j—dt=—+—2+o — |, X—>+0
1t X X X

ii'v n—oo

k=nk5 4

. Zlnn (L+0@)x Inyx , X — +o0.

nSX

L) 1
+2 dt_ex—zelnx+0(1),x—>+oo.

P — <

~— n%™"

, 1—>00.
e-1

gl
=~
N
CD\
=~
@D

=}

k=
J‘ +t2dt=x+%lnx+0(1),x—>+oo.
0
Tzt
— =4+ 0| — ,Xe[_'L'—HX)).
{t > +t+2 X x?
" ink 1
. ZIn? n, n—oo.
= k 2
+o0 e—
Z( 1) k+1’ X—>+x.
0t+X k=0
+00 2 2
gl L @ @38
: X X X X
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19.

(o]

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

N 2k — )N
je‘dt~ Z( )k(2k Zk) | X—>-+00.
17[ Xxcost e_x

—le cos(nt)dt ~—, X —>+00.

ﬁ! (") N27x

ij.cos(Xsint—nt)dtz /icostx—z—ﬂ—nj+0(lj, X —> 400,
V4 X 4 2 X

CSIntsm(xt)dt_ fisin(x—zJ E+O(1j , X—> 40,
«/1—t 2X 4 )\ 2 X

2k

F(k +1/2)
f (ix)*

s

T n(L+t%)dt ~ Z( ~Dt (22k)+1, X —>+0.
2
[ si
0

n"tdt ~ f— n— +0.
[a—)"dt~ Ji,n%m.
-1 n

1
[ett" @+ t2)"dt ~ fﬁ-i, N —> +o0.
5 2n 2"

zl2
[ et~ Z( = (ka) X400,
0
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Chapter 2. The simplest properties of entire functions

2.1. The maximum of the modulus of an entire function. Entire
transcendental functions. A function f:C— C is called holomorphic [3,

26] at a point a if it has a derivative in some neighborhood of that point a. A
function f is called holomorphic on a set E if it is holomorphic at every

point of that set. A function f that is holomorphic at every point
z=x+iyeC is called an entire function [22, 24, 28, 31, 45, 47, 51, 54].
Thus, an entire function is a function f that has a derivative at every point
zeC. For a function f to have a derivative at a point z=x+1iy, it is
necessary and sufficient that the functions u=Re f and v=Imf , treated as
functions of two variables, are differentiable at the point (X;y) and satisfy at
that point the Cauchy-Riemann conditions [3, 26]:

ou _ov

x
au_ ov
oy x

In order that a function f be an entire function, it is necessary and

sufficient that it represented by a power series of the form [1, 22, 24, 28, 31,
45, 47, 51, 54]

f(z):iszk (1)
k=0

that converges for all z € C. The series (1) converges for all ze C if and
only if lim akf f| =0. The Taylor coefficients f, of an entire function f are
k—o0

determined by the formulas [1, 22, 24, 28, 31, 45, 47, 51, 54]:
(k)
(=10 L1 10
i

k kT k+1
k! 27 wiom b -

From the last formula, follow the Cauchy inequalities:
(vr>0)(vk20):|f,[r* <M (r), where M (r)=max{|f(2)|:|z| <r} isthe
maximum of the modulus of an entire function f . The maximum of the
modulus is one of the key characteristics of an entire function. It follows from
the maximum modulus principle that [1, 22, 24, 28, 31, 45, 47, 51, 54]:

Mf(r)=max{|f(z)|:|z|=r}=max{‘f(reig)‘:ee[O;Zn]}.
Finding the maximum of the modulus of an entire function is possible only in
52

dt.



specific cases.
Example 1. The functions f(z)=e®, f(z)=sinz, f(z)=cosz
f(z)=€"" and f(z)=e?", where pEZ,, are entire functions. The

functions f(z):ﬁ, f(z)=Lnz and f(z):ezp with p&Z,, are not
entire.

Example 2. If f(z)=1+2z, then ‘f(rei‘g)‘=\/1+2rcose+r2 and
M;(r)=1+r.

Example 3. If f(z)=¢?, then ‘f(rei‘g)‘ = and

M, (r)=e".

er(cose+isin 0) ‘ _ ercosH

Example 4. If f(z)=e™ ,where r=se” eC and neN, then
‘ f (relg)‘ _ neinH

esr” cos(nf+y)

Srnei(n€+q1)
=|e =

iy
se’r
e

esr“ (cos(né+y )+isin(nf+y))

(cos(sr" sin(nd + 1//)) +isin (srn sin(ng + !//)))‘ _ st cos(noy)
Therefore, M (r) = e

Example 5. If f(z)=e"+z, then [f(z)=

eZ+z‘£
eZ

+|z|<e"+r for |z|<r. Thus M (r)<e"+r. On the other hand,

MO

e’+r‘=er+r and M, (r)>e"+r.Hence, M;(r)=e" +r.

n
Example 6. If f(z):Z:szk is a polynomial of degree n, then
k=0

[T (@)|=|f||z]"@+0@) as z—>o, and M (r)=+oD)|f,|r" as
r —+oo. Thus, the degree of a polynomial can be determined using the
formula (here In™ x:=max{0;In x} for x>0):

~ In"M,(r)
n= lim ——~.

r—+00 Inr

Example 7. If f is an entire function, then M (r)<>’|f |r*,

k=0
because
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o0

> fre* sgg[woz?lz);]g]fdrk =kzz(;|fk|rk .

k=0 0
Example 8. If f is an entire function and all f, >0, then

M: (r)= max
f ( ) 0€[0;27]

M (r)=>"fr*. Indeed, M(r)2|f(r)|=>_f,r*. On the other hand,
k=0 k=0

M (r) <D [f[r* =D firk.
k=0 k=0

Example 9. Let f(z)=sinz and m, (r) =min{|f(z)|:|z|=r}. Then
M (r)=(e"—e™")/2 and m,(r)=lsinr|.

Indeed,  [sinz|]=ych®y—cos’x. If x*+y®>=r?  then

ch? y—cos? x = ch?y/r? —x? —cos® X . But

xsh2yri—x* .
(ch?/r? —x* —cos® )", =—W+sm 2X,
r2—x

SN 1, e ©Oo0), IMX 21, xe (0:40).
X

u
Therefore, (ch?+/r? —x? —cos®x), <0 forall x <[0;r]. Hence,
m, (r) =| f (r)|=V1-cos’r =[sinr| and M (r) =|f (ir)| = (e" —e")/2.

Every polynomial is an entire function. An entire function that is not a
polynomial is called an entire transcendental function. Entire transcendental
functions can be thought of as polynomials of infinite degree.

Theorem 1 (Liouville). For an entire function f to be a polynomial,
it is necessary and sufficient that

_In" M (r)
lim ————<
rowo o INT

+00. 2

n
Proof. If f(z):Z:szk is a  polynomial, then
k=0

IN"M; (r)=@+o@)nInr as r—>+ow, and the condition (2) holds.
Conversely, suppose condition (2) is satisfied. Then, there exist a number c,
and a sequence (r,), 0<r, T 4o0, such that M (r,) <cr. Therefore, using

k—Cl

Cauchy’s inequalities for all K €Z, and neN,WeWMM|msgm
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Taking the limitas n to +oo, we conclude that | f,|=0 for k > ¢, thatis f is

a polynomial. The theorem is proved. »
Corollary 1. For an entire function f to be an entire transcendental

function, it is necessary and sufficient that
_In" M (r)
lim ——— ==+
r—>+o0 Inr
Theorem 2 (Hadamard’s Three Circle Theorem). Let f 0 be an
entire function Then, for any I, r and I,, O0< I <r<r,, the following
inequality holds:

|an(r)S|an(rl)u M

nr
+InM¢ (1) .
Inr,—Inr, Inr,—Inr,
Proof. Let D={z:r,<|[r|<r,} and g(z)=2z"f(z), aeR. Then
|g(z)| is a single-valued function in D. By the maximum modulus principle,

the function g attains its maximum and minimum values in D, which must be
attained on the boundary oD . Hence,

raMf(r)SmaX{ﬁaMf(ﬁ);rzaMf(rz)}- 3)

Let us choose a such that “M; () =r,’M; (r,) . Then, from (3), we obtain

the required inequality. The theorem is proved. »

Corollary 2 ([1, 22, 24, 28, 31, 45, 47, 51, 54]). The function
InM; (r) is convex with respectto Inr on (0;+o0) .

Corollary 3 ([1, 22, 24, 28, 31, 45, 47, 51, 54]). The right-hand

- dinM(r) . .
derivative f; (r):W is a non-decreasing function and for every

entire function f #0, we have

)
M, (r,)~INM  (5)= [ B (dInr, 0<r <.
]
Corollary 4. If f is an entire transcendental function, then
B (r) >+ as r —+oo.
Corollary 5 ([1, 22, 24, 28, 31, 45, 47, 51, 54]). If f is an entire
transcendental function, then there exists a function u: (0;+00) — (0;+00) such

55



that u(r) >+ and exp(u(r))M;(r)=M;(L+o(@)r) as r—+w. One
can take, for example, u(r) =, /ﬂf (r), because

(L+e)r

JBi (D) +INM ¢ () =InM ((L+&)r) - I B O)dt+ [ (r) <

r

<InM (A+&)r)—B; (r)In(L+ g)+,/ﬁf (r)<InM; (@+&)r)
forany e>0 if r>r(s).
Corollary 6 ([1, 22, 24, 28, 31, 45, 47, 51, 54]). If f is an entire

transcendental function and P';" is the function inverse to ¥, (r) =In M (r),

then
P (x+0(1)
mf:]..
X—>0 \{/f (X)
2.2. The maximal term and central index of an entire function.

Inequalities between the maximum of the modulus and the maximal term
of an entire function. Let f be an entire transcendental function with Taylor

coefficients ~ f,. The functions (r):max{| fi|r* :kzO} and
Vi (r):{k:yf (r)=|fk|rk} are called, respectively, the maximal term and
the central index of an entire function f [1, 22, 24, 28, 31, 45, 47, 51, 54].
Since f is an entire function, it holds that &/|f|—>0 as k—oo, and
therefore |f,|r —0 as k—oo for every r>0. Hence, x;(r)<-+o and

v (r) <+oo foreach r €[0;+x).

Theorem 1 ([1, 22, 24, 28, 31, 45, 47, 51, 54]). For every entire
function f holds

pe (<M () <@+ e)ps (A+2)r),
forall r>0 and £>0.
Proof. Indeed, the left-hand side follows from the Cauchy inequalities

| f,|r" <M (r), while the right-hand side follows from the inequalities

M, (r) < i| fJr < i] fi| r@+2) L+ &)™ < u (A+e)r)L+1/g).
k=0 k=0

The theorem is proved. »
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Theorem 2 ([1, 22, 24, 28, 31, 45, 47, 51, 54]). If y,(f)=0,
2. (f)=|f, 1/ f,| for neN and
0<n(f)<z(H)<.., (1)
then g (r)=|f [r"  for  rely,(f)izma(f)] and v (r)=m if
F € Lm(F); Zma (F)) -
Proof.  Indeed, fo="To/Ca(f)...xm (f)).  Therefore, for
€ lxm(F); ()]

||::I:I:ﬂ = Ziea (oo z ()0 < (0 (F)10)" <1, k<,

LA - k-m

W=f ! e (F)ee it (F) < (0 ta(F)) 7 <1, k>m,
In addition,

||ffr:::; ™ e (F)ee 2 () < (1 e ()" <L, k>,

if rely,(f); Zma ()] and k>m. Theorem 2 is proved. »
Example 1. If f(z)=e*, then f, =1/k! and y, =k. Therefore,
e (r)=r"/m! for r e[m;m+1]. Thus, using Stirling’s formula
m!=(1+o(L)V2zm(m/e)", m—>oo,
we obtain
e (r)=@+o@)(re/m)™/2zr , r — +00.
The function ¢(t) =(re/t)' on the segment [r —1r] is increasing, ¢(r)=e"
and
p(r—-1) =(er/(r-1)) " = @+0Q)e", r —+wo.
Hence,
2; (1) = (L+0(@)e" /\2zr , r = +o.
Theorem 3 ([1, 22, 24, 28, 31, 45, 47, 51, 54]). If f is an entire
transcendental function, then v, is a non-decreasing function and

f t
I (1) = g (1) + [ 20

o

dt, O<ry<r. 2
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Proof. Indeed, continuity on the right and monotonicity follow from the
previous theorem. Further, for h> 0, we have

ve (r+h)
< |n(yf (r)(@j ]s

<Inp () +vy (r+h)|n(1+?j,

r vi(r)
< In[,uf (r+h)(m) J:

=Inp; (r+h)—v (r)In(1+2j,

In g (r+h)—In 2 (r)

o7

Therefore, the function v; is non-decreasing and, hence, continuous

v (r+h)

In 2 () =Infa, o (r+1)

v (r)

In g (r)=In|f, r

ve(r) <

<v, (r+h). 3)

everywhere on [0;+00) except possibly at a countable set of points. Thus, by

writing the analog of the inequalities (3) for h< 0, for all t >0 except possibly
for a set of measure zero, we obtain

(In g, @

Since the functions In(| fk|r") are convex with respect to Inr, the function

vt
) = = 4)

In 2 (r) is also convex with respect to Inr . Hence, the function In g (r) is

absolutely continuous on every finite interval. Therefore, from (4) it follows
(2). The theorem is proved. »
Corollary 1. If fy=1and O0< g (f)< x,(f)<.., then

_er(t) _l' £ 3 r _ r
mﬂf(r)—l . dt—!'”tdvf(‘)‘owz(;)«'”zk(f)"”xl(f)...zw(”'

Theorem 4 ([1, 22, 24, 28, 31, 45, 47, 51, 54]). For every entire
function f holds

M (D)< g (v (+ Q) @710 ),

forall r>0, £>0 and peN.
Proof. Indeed,

v (r)
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vi(r)+p-1 £

Mi< D[R+ D [f]ra+e) @+e)* <

k=0 k=v¢ (r)+p

<ur (1) (Vf )+ p) +p (N A+e) TP g

In addition,
1+¢
(L+e)r . ( )

In g @+ &) =M )+ | t

and we obtain the required inequality. Theorem 4 is proved. »

Theorem 5 ([1, 22, 24, 28, 31, 45, 47, 51, 54]). For every entire
function f holds

M () < g (N (v (@+e)r)+ p+ L+ 2) P ),

forall r>0, £>0 and peN.
Proof. We have

dt<v, (@+e)r)In(l+e),

vi (A+e)r)+p-1 .
k k -k
Mc< D R+ D0 R |r@+e) @+e)* <
k=0 k=v¢ (A+e)r)+p

< Wy (I’)(Vf (@+&)r) + p)+,uf (A+&)r)d+e) " @enypi

But
(L+e)r v (t)

In 22 (L+&)r) = In g, (r) + dt<v, (L+e)r)In(l+e),

t
r
and we get the required inequality. Theorem 5 is proved. »
2.3. Newton’s majorant. Let’s find another entire function f , which
has the same maximum term as f [1]. To do this, we will construct points

A1(n;—ln|fn|) on the plane. Starting from a point A, = A, (assume that

f,#0), we draw a vertical ray |, downward and rotate it counterclockwise
around the point A, until it intersects one of the points A, # A, . Let the ray

|, coincide with the ray Eat the time of intersection. Along this ray E besides
A\, there is at least one more point A,. The farthest one of these points from

- . 1 1 .
A, (there are finitely many such points, because —Inﬂ — 400 is denoted
n |a,

as A, . Next, from A, we draw a vertical ray |, downward again and repeat
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the process, rotating it around the point A, . This results in an infinite number
of points A, . Connecting these points successively by segments, we obtain a
convex polygon G, which is called the Newton polygon. We then project the
points A, onto the polygon G, yielding points A, (n;—In f,). It is clear that
fn =exp(—G(n)), where the y=G(x) is the equation of the polygon G . An
entire function f with Taylor coefficients fn is called the Newton majorant of

the function f . From the construction, it follows that fnk =|f, | and | f,|< f)

for all n. In this case, In/cn(f) is the angular coefficient of the segment
joining the points A, and A, where y,(f)=|f,,/f,|. Since G is a
convex polygon, the sequence ( ;(n(f )) is non-decreasing. Moreover, if

0<n(f)<p(H)<.., (1)
then |f,| = f, . Since f isan entire function, we have [1]

- —\ -1 -1
|im;<n(f)=|im(Q/E) :Iim("kffnk) = oo

Hence, f is an entire function. The points A, are called the vertices of the

Newton polygon.
Remark 1. If f,=1f =..f_,=0, f_,#0, then by the definition

f, = f, =...f., =0 and the construction of the Newton polygon, we start from
the point A, = A,_;, drawing a vertical ray I, downward from it. In this case,
the Newton polygon also includes the ray f(J parallel to the ordinate axis,
starting from the point A, =A;. Then 0< x,(f) < x,,,(f) <.... It can also
be stated that in the considered case, the Newton majorant of the function f is
the function f(z) =z°"'F(z), where F is the Newton majorant of the function
F(z)=f,, + f,z+.... Moreover, s (r)=r°u; (r) pe(r)=ru(r).

The main properties of the Newton majorant can be summarized in the

form of the following statements.
Theorem 1 ([1]). For every entire transcendental function f holds

|f|<f, and f, =|f, | forall keZ.
Theorem 2 ([1]). For every entire function f holds M (r) <M (r)

for all r €[0;+0).
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Theorem 3 ([1]). For every entire function f holds
O<ls(f~)£;(s+l(f~)S"'Slk(f)_)oo’
for all k e Z, where S is the smallest natural number for which f_, #0.
Theorem 4 ([1]). For every entire transcendental function f and all

keZ holds p;(r)=|Toa|r*™ if re[0;x ()], and p;(r)=|T,|r" if

r e[;gm(f);;(mﬂ(f)] and m>s, where S is the smallest natural number for
which f,_, #0.
Theorem 5 ([1]). For every entire transcendental function f holds
an+1(F) =an+2(f~) aaRil zlnkﬂ(f) =

/(g 1—"k) 1/(ng1-Nk)

- f”k / f”k+1 - f"k / fnk+l
for all k € N. In this case, the sequence
o5 M) .
pk: fnk/fnkﬂ 'pO':O'

is increasing, p, — o, and

(pk—l)nk = fnk_l‘(pk—l)nk_l =

M (P =
f~nk (an )"k =|f (lnkﬁ-l)nkﬂ'": fnkﬂ—l‘(;(nkﬂ—l

Theorem 6 ([1]). For every entire transcendental function f the
function v is non-decreasing and continuous on the right, the set {n, :k € N}

fo

)nk+1—1

Nk +1

is the set of its values, the points p, are its points of discontinuity and for all
keN holds s (r)=|f,

Theorem 7 ([1]). For every entire transcendental function f and all
r €[0;+0) holds s (r) = s (r) and v (r)=v:(r).

r'and v.(r)=n, for re[p;;p.).

Theorem 8 ([1]). If f is an entire function and all f, =0, then
vi(r)=max{k:z (f)<r}=—1+ >  1,where z(f)=0.

iy (F)=r
Theorem 9 ([1]). For everykentire transcendental function f and all
k, €7, there exists I, € R such that g (r)=max{| fo|r" :nzko} for all
re[ry;+o).
24. ®-type of an entire function. Let f and @ be entire
transcendental functions, and let ¥, be the function inverse to
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W (X)=InM, (x). The @ -type of an entire function f is defined as the
number g = qqf, , determined by the equality [1]:
__‘I’(‘I}(In+ M, (r))
g= lim :

r—-+00 r

The ®@-type of an entire function f can also be defined as the exact infimum
of those 0 €[0;+] for which (3, €R)(Vr=ry): M (r)<My(gr). In

this definition, the maximum of the modulus can be replaced by the maximum
term. That is, the @ -type of an entire function f is the exact infimum of those

0y €[0;+00] for which (3ry e R)(Vr=1y): 15 (1)< g (4r).
Theorem 1 ([1]). If the sequence ;(n(CD)=|CDn_1/d)n| is non-

decreasing, then
0o =E,n/| f /@] @)
Proof. Indeed, let us denote the right-hand side of (1) by ndf) . Then
(Ve >0)(3c ) (vn): |f,|<c, |, |7, ni=ng +¢.
Therefore, s (r)<cyu; (nr), and hence, dp <74 . Now, let’s prove the
opposite inequality. If qqf) =+o0, then it is obvious. Let q(L <+o0. Then
(Ve>0)(3n)(Vr=1y): py (1)< s (ar), q:=qq +&.
Thus, |f,|r" < (ar), n>0, r>r,. Taking r=y,(®)/q in the last
inequality, we get |f.|(x(®)/q)" < o (1,(D)) =|®, |27 (f), that is
an, < q(}; . The theorem is proved. »
Example 1. If ®(z)=e’, then WY,(X)=x, WYg(X)=x,

——In" M (r) — —k
f e Tm— \/ f_limkllk1 £ | = lim =k
= fim == and q, = fimyfltt] = fim 48]
2.5. The Poisson formula and the Schwarz formula. The Schwarz-
Jensen formula and the Poisson-Jensen formula. Let

U(aR) ={z:|z —a/< R} and f is a function holomorphic in a closed disk
U(0;R):={z:|z| <R}, where 0 <R <-+0.
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Theorem 1 ([24, 28, 31, 34, 45, 47, 51, 54]). Let O0<R <+ and
U(a;R) = {z :|z — a| < R}. If the function f is holomorphic in U (0;R), then
the following Poisson formula

27 2 2
o R -]z
f(z):ij f(Re'H)—sze, 7| <R, Q)
271' 0 ‘Reig_
and the Schwarz formula
1% o ReY +2 .
f(z):-jRef(Re )" do+ilmf(0), @)
27 ] Re" —z

hold for zeU (O;R).
Proof. By Cauchy’s integral formula, we have
1 f(t)dt_{f(z), 2eU(0;R),

27 VR t-z 0, z¢U(O;R).

This yields (1) and (2) for z=0. Let zeU(O;R), z#0 and z°=R?/Z.
Then

Lo g0
2701 5,10 t— 2
Therefore, for zeU (O;R) , we get
2z 2 2
v RO—|z

Thus, the formula (1) is proved. If u=Re f and v=Imf , then from (1) we
obtain

1 27 ) R2—|Z|2
u(z)=— | u(Re")——--do, |7|<R, 3)

2”1[ ‘Re'g—z2

21 02 |52
1=in_—|Z|2d9, 7 <R, @)

2 0 ‘Re"’—z‘
u(0)—i2fu(Re‘9)de (5)

Cor 0 '

It is easy to see that (here z=re'?)
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RV+z R |z R? —r?
Re' —z ‘Reie_z‘z R* —2Rrcos(¢p— ) +r?

Let’s consider the function

f(z)_—ju(R e')

Re' +z 1 t+z
Ré/—z  2xR j u(t)_|dt|

auU (O;R)
This function f; is holomorphic in U(0;R) and Re f, =u =Re f . Therefore,
f = f,+const. Indeed, if u, =Re f, and v, =Im f,, then from the Cauchy-

Riemann conditions, we find
o _ov aul %

x oy x oy’
that is
N _ vy
oy oy

This implies v(X,y) =Vv;(X,y) +¢,(X), where c,(x) does not depend on y .
Moreover, from the Cauchy-Riemann conditions, we obtain
oV _ ou_ ou _ v OV _ vy

x oy oy Rl
and therefore, v(X,y)=v;(X,y)+cC,(y). Hence, the functions c,(x) and

C,(y) are constant (=c,) . Further, v=v, +c,, f = f +¢, and

i0
Re +Zd9

f(z)-—ju(R &) o
Furthermore, using (5), we obtaln
2z
u(0)+iv(0):2i _[ u(Re')dé+c, =u(0)+¢,, ¢, =V(0).
T
0

From this and the previous equality it follows (2). The theorem is proved. »
Corollary 1. If the function u is harmonic in U(O;R), then the

Poisson formula (3) holds.
Proof. Indeed, a function is called harmonic in the closed disk

U (0;R) if it is harmonic in some domain G —U (0;R). This domain G can be
considered simply connected. Then, there exists a function f holomorphic in
the domain G such that Re f =u. From here and from the proof above it
follows (3). Corollary 1 is proved. »
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Theorem 2 ([24, 28, 31, 34, 45, 47, 51, 54]). If the function f is

holomorphic in U(0;R) and has no zeros there, then the Schwarz-Jensen
formula

|nf(z)=—j|n\f(Re'9)\ Re"” +Zd9+|co ©)
and the Poisson-Jensen formula
1% o R2=|2f
In| f ()| =— [ In|f (Re")|————d@, )
| | 2 '([ ‘ ‘ Rel? _2‘2

are valid, where In f (z) is an arbitrary holomorphic branch of the function
Ln f(z) in U(O;R) and ¢, =Imin f (0).

Proof. To derive these formulas, it is sufficient to apply formulas (1)
and (2) to the function In f (z) . The theorem is proved. »

2.6. Zeros of holomorphic functions. The Nevanlinna-Jensen
formula. Jensen’s equality. The zero of a function f is a number a for

which f(a)=0. In other words, a zero of a function is a number that is a

solution to the equation f(z)=0. Let the function f be holomorphic in a

domain D. A zero a e D of the function f is called a zero of finite order

me N or a zero of multiplicity me N if [3, 26, 34])
f(a)=f'(a)=..= f ™V (a)=0, f™(a)=0.

A zero ae D is called a zero of infinite order if (vneZ,): f™(a)=0. A

zero of order m=1 is called a simple zero. In complex analysis, it is proved
that all zeros of a holomorphic function f =0 in a domain D have finite

multiplicity. Furthermore, the following statement is proved.

Theorem 1 ([3, 26, 34]). Let the function f be holomorphic in a
domain D. Then the following conditions are equivalent:

1) the function f has a zero of order meN at the point
aeD\{w};

2) the function f can be represented in the form

f(z)=(z—a)"g(z), where g is holomorphic function at the point a and
g(@)=0;
3) the Taylor series expansion of the function f in the neighborhood

of @ has the form f(z)="> b, (z-a)"

k=m
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Theorem 1 is proved in complex analysis.
Let Z={z, } be the set of zeros of a function f holomorphic in a

domain D, and let m, denote the order (multiplicity) of a zero z, . The set of
all ordered pairs {(zk;mk )} is called [3, 26, 34] the divisor of zeros of the

function f . The sequence of zeros of the function f is the sequence (4,)
constructed as follows:
=A==y =14, lwlzlwz :...:ﬂbm2 =2Z,....
The number of zeros of the function f on a set E< D is defined as the
number nN; g = Z mg, ie, N;p= 21. According to the uniqueness
7 €E A €E
theorem (also proved in complex analysis), if the function f =0 is

holomorphic in a domain D, then it has a finite number of zeros (or none at
all) on any compact from D [3, 26, 34].

Example 1. If f(2)=z°(z-1)sinzz, then the set
Z={0;1,-12;-2;..} is the set of zeros of f and the sequence
A=(0;0;0;11-12;-2;3;,—3;...) is a sequence of its zeros.

Theorem 2 ([24, 28, 31, 34, 45, 47, 51, 54]). Let 0<R <+, the
function f #0 is holomorphic in U(0;R):={z:|z|<R}, has a zero of

multiplicity m at the point 0 and (4,) be a sequence of its zeros. Then the

Nevanlinna- Jensen formula
In|f (z)| = —IIn‘f(Re'g)‘Re Re” +ng+ |R(Z A)
-1 oSt | R*-24,

+m|nH (1)
R

is valid for zeU (O, R).

Proof. Indeed, to obtain (1), it is enough to apply formula (4) from
section 2.5 to the function
f(2)

R — T )

z 2
o<jix|<R R* =24,

which satisfies all the conditions of Theorem 2 in Section 2.5, and taking into
account that (the denominator is conjugate to the numerator)

R(Re” - 4)|_| Re"’ - zk|
RZ—Re“2 | |Re™ -2
and (see the formula (4) from section 2.5)
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Re +z

—Imln|z|R dH min|z].

Theorem 2 is proved. »
Theorem 3 ([24, 28, 31, 34, 45, 47, 51, 54]). Let 0<R <+, the

function f =0 is holomorphic in U(0;R) = {z |7 < R} , f(0)=1 and (4,)
be a sequence of its zeros. Then the Jensen equality holds

R

In—= In| f (Re'")d6 . 2
0<%:<R |/11<| 277'[ ‘ ‘

Proof. To obtain formula (2), it is enough to substitute z=0 in the
Nevanlinna-Jensen formula

2z
In|f (2)|= jln\f Re")|Re Re” R 240+
-2 0<\,1k\sR

R(Z Rz-4)|
_Zﬂ'k

Theorem 3 is proved. >
Theorem 4 ([24, 28, 31, 34, 45, 47, 51, 54]). Let 0 <R <+, the
function f =0 is holomorphic in U(0;R), has a zero of multiplicity m at the
point 0 and (4,) be a sequence of its zeros. Then the Jensen equality holds
2r ) (m)
> R sminr=—1 j In|f (Re'”)|d6— In w‘.
0<AJ<R |21<| 2r 0 m!

Proof. To obtain formula (3), it is enough to passing to the limit as
z — 0 in the Nevanlinna-Jensen formula or apply formula (2) to the function

F(z)=m!f(z)/ f™(0). The theorem is proved. »
Corollary 1. Let 0<R <+ and the function f =0 is holomorphic
in m Then the Jensen inequality holds
N(r)<InM,(r)+c,, re[0;R],
where the constant ¢, depends only on f . In this case, ¢, =0 if f(0)=1.

2.7. Upper bounds for a holomorphic function via modulus of its
real part. Lower bounds for holomorphic functions
Theorem 1 ([24, 28, 31, 34, 45, 47, 51, 54]). For every function f

holomorphic in U(0;R), 0 <R <+, holds
M; (r) s| f (0)| + (A (R)—Ref(0)2r/(R-r),
where 0<r<R and A (r) =max{Re f (z):|z|=r}.
Proof. From the Schwartz formula, taking into account that

@)
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1 2 .
u(0)=— [ u(Re”)do,
0

T on
we obtain
f(z):lzfu(Re‘f’) 2 40+ 1(0), |7<R
Ty Re' —z ’ ’
27
0=2f 7 —do.
7y Re” —z
Therefore,
1271' " 7
f(z2)=-= [ (A; (R)~u(Re"”))——d& + f (0).
T o Re" -z

Since A (R)—u(Re'’)>0, we have
1 2 i
|f(z)|g;$ g (A (R) —u(Re“))d0 +| f (0)] =

=|f (0)|+ (A (R)—u(0))2r/(R-r),
whence it follows the required proposition. Theorem 1 is proved. »
Corollary 1. If 0<R<+o0, the function f is holomorphic in
U(O;R), f(0)=1and f hasno zerosin U(0;R), then
In|f(z)|2—RZ—rIan(R), r=|z<R.
—r
Theorem 2 ([24, 28, 31, 34, 45, 47, 51, 54]). If 0<R <40, the
function f is holomorphic in U(0;2R), f(0)=1 and f has no zeros in

U(0;2R), then
2r
|n|f(Z)|Z—ﬁlan(R), r=|Z|< R.

Proof. Indeed, let’s consider any holomorphic branch w of the
function Ln f(z). Then Rey(z)=In|f(z)|, w(0)=0, and by Corollary 1,
we obtain

—In|f () <|In| f (2)]| <|w(2)| < max{In| f (2)|:|z| < r}2r / (R—1) =
=InM,(r)2r/(R-r),
whence it follows the required proposition. Theorem 2 is proved. »

Theorem 3 (Cartan) ([24, 28, 31, 45, 47, 51, 54]). Let (4 ), k eln,

be a finite sequence of points 4, e C and h >0 be a given number. Then, in
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C there exists a system Q of disks with the sum of the radii equal to 2h, such
that

(VzeQ): >(h/e)".

[1G-4)
k=1

Theorem 4 ([24, 28, 31, 45, 47, 51, 54]). Let 0<R <+, the
function f is holomorphic in U (0;2eR), f(0)=1 and 0<7<3e/2. Then
inside the disk U(0; R), but outside of a family of excluded disks the sum of
whose radii is not greater than 47R , we have

In| f (z)| >—-H(n7)InM, (2eR), H(n)=2+In ;%_e.

n

Proof. Let n=n(2R) be the number of zeros of the function f in the

disk U(0;2R), and

(—2R)" 2R(z— 4,)

9(2) = 55" —,
I I /’lk\)Lk\SZR(ZR)Z_;lkZ
[ |=2R

where 4, , keln, are the zerof of f in U(0;2R). Then the function

F = f /g is holomorphic in U(0;2R), has no zeros in U(0;2R), F(0)=1,
and

M. (2R)=M,(2R) [T (4]/2R).

|4|<2R
INnM:(2R) =InM, (2R)-N(2R) <InM, (2R).
Therefore, by Theorem 3

2R
In|f(z)|2—2R_R2Ian(2R)=—2Ian(2eR), lz|<R.

But, for zeU(O;R)

[T @Ry -42) < (6R?)".

|k [<2R

According to Theorem 3, outside of a family of excluded disks with the sum of
the radii equal to 477R , we have

11 2rRGE-4)

Jil<2R

> (2R)" (2R / &)

and consequently
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In|g(z)|> N(2R)+Inwz nin 2L, 7 <R
e"(R*)" 3e
From the Jensen inequality, we obtain

n:n(zre)gzjR (ZR)dt<2jR”(t)dt N (2eR)<INM, (2eR).

2R
Hence,

In|g(z)|>InM (2eR) Iné—z,

In|f(z)|>In|g(z)|]-2InM (2eR) > -2In M (2eR)+In:23 InM, (2¢R) ,

and we get the required inequality. The theorem is proved. »
Corollary 2 ([24, 28, 31, 45, 47, 51, 54]). Let f be an entire

transcendental function. Then there exist a number ¢, >1 and a sequence
(r.)), 0<r, Moo, 1, /1, =0(1) as k — +o0, such that
Inmin{ | (2)|:|z| =1}
m > —00
P~ InM« (c1)
Proof. Indeed, let R, =2%. Put R=R, and 7=1/16 as in Theorem
4. Then, in the disk U(0; R, ), outside a system of exceptional disks with the
sum of the radii equal to 47R, , we have
In|f (2)|>-H(@@) InM (2eR,)
Since 4R,77=R, /4<2**=R, —R,,, there exists a circle AU(0;r,),
R, , <7, <R, , which does not intersect the exceptional disks. It remains to
note that R, <2r, and, therefore, I,/ <4.»
2.8. Counting functions of sequences. Let (4,) be a sequence of

complex numbers such that 0<|4|<|4,|<..., and let n(t) denote the number

of terms of a sequence (4) for which |4 |<t, e,
n(t) = Z 1=max{k :|4 | <t}. The function n(t) is called the counting function
| 2|t

of the sequence (4, ), and the function [24, 28, 31, 33, 45, 47, 51, 52, 54]

N(r):jwdtm(onnr, r>0,

70



is called the Nevanlinna counting function or the averaged counting function of
the sequence (4,). Since

3 In—=.|. T4 (n(t) -n(0)) = det,

0<| A |<r |A1<| 0

we have

NI = 3 I +n@inr.

0<| A |<r | |
Ifall 4, =0, then
N( ) Z I n(r) rk
r)= n— .
: Iﬂkl A
<r E| | HM |

n=1
Example 1. Let A4, =2k/3. Then for a given t> 4 there is m such
that 4, <t<A, ., n(t)=m=34,/2<3t/2 and
nt)=m+1-1=34_,,/2-1>3t/2-1.
Hence, we have n(t)=3t/2+0(1) as t - +oo, and N(r)=3r/2+0(Inr)
asr — +o.
logt

Example 2. Let A =q“*, [g|>1. Then n(t)_ oald |+O(1) as

t —+o0 and
2
N(r)= In”r Inr +0@@), r — +oo.
2In]q| |

Indeed, let t>1. Then there is m such that |gf" <t<|q".

Therefore, n(t)=m, m> logt , m< logt +1 and n(t)_ logt +0(@) as
log|a] " log|q| log|q|

t —-+oo. Further, if r>1 then there exists m such that [q|" sr<|q|m.

Furthermore, r = a|q|m71, 1<a<|q|. Thus

m-1
—=mlInr—Injg| > k=
k=0

:m(lnr—m—_lln|q|j= Inr—Ina+In|q|(Inr+|na):
2 2In|q|
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Inr  In*a Inr+ln|q|lna In?r Inr

2In|q| 2In|q| 2In|q| 2In|q|

Example 3 ([1]). Let qe[0;+o0), let (ﬂk,l) and (,1“) be two
sequences of nonzero complex numbers, each of which has a single

accumulation point at oo, and let N,(r) and N,(r) denote their averaged

counting functions. Then the following conditions
N,(r) <N,((g+o@)r), r > 4o,

+0(), r—+o0.

and
1/n

anM | s

are equivalent. The conditions
N,(r) =N, ((q+o(@)r), r >+,

and

1/n

I|mH|/1k 1 24

n—oo

are also equivalent.
2.9. Zeros of entire functions. It is known that every polynomial

n
f(z):kazk of degree n has exactly n zeros 4, (counted with
k

multiplicities) in C and can be represented in the form [24, 28, 31, 33, 45, 47,
51, 54]:

f(z)=f H(z A)=c"[[@-2/4),
A #0
where m is the multiplicity of the zero z=0, and ¢ is some constant. Now,
let’s consider similar expansions for entire transcendental functions, which can
be regarded as polynomials of infinite degree. An entire transcendental function
either has no zeros, or it has a finite number of zeros, or it has an infinite
number of zeros. If the number of zeros of an entire function f is infinite, and

(4,) is the sequence of its zeros, then I!im A, =oo. Moreover, the following
—0
statement is true.
Theorem 1 ([24, 28, 31, 33, 45, 47, 51, 54]). If the sequence (4, ) isa
subsequence of the zeros of an entire function f =0, then Jensen’s inequality

holds
N(r)<InM; (r)+c,, r e[0;+x), @
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where ¢, is a constant, n(t)= Zl N(r)= det+n(0)lnr and
A<t

M, (r)= max{‘ f (re"’)‘ :6¢[0; 27;]} :
Proof. Indeed, according to Jensen’s equality
" +minr=— J- In‘ f (re"g)‘de
<[z |<r |Zk|
where (z,) are the zeros of a function and m is the multiplicity of the zero 0.

(0
m! |

Moreover, n(0)<mand > In—=< > In— . Therefore,
<\ J<r |ﬂ1<| 0<lzg|<r |Zk|
0 ™ (0)
> In— +n(@)Inr<_- jln\f(re‘ )|do—In .
odaler |/1k| m!
In addition,

1 = i
2 | Ml efao<inm, 0
and

3 Inﬁ+n(0)lnr =.Iln%d(n(t)—n(0))+n(0)lnr -

0< A |<r

.
=jMdt+n(0)|nr=N(r).

° t
Therefore, we obtain the inequality (1). Theorem 1 is proved. »

Remark 1. The inequality (1) indicates that an entire function cannot
have too many zeros. Entire transcendental functions, metaphorically
speaking, are polynomials of infinite degree. Therefore, one might expect them
to have an infinite number of zeros and decompose into factors. To some
extent, this is true. According to the Picard theorem, for each entire
transcendental function f and each aeC, except possibly one exceptional

value a, the equation f(z)=a has infinitely many zeros. Such an exceptional
aeC indeed exist for some entire functions. For example, for the function
f(z) =¢?, the equation e* =0 has no roots, so a=0is an exceptional value.

The following statement is useful when studying the expansions of
holomorphic functions into series:
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Theorem 2 ([24, 28, 31, 33, 45, 47, 51, 54]). Let L be an entire
function with zeros at the points A, and |,(z) =L(z)/(z—4,). Then for each

0 >0 there exists a constant ¢, (6) <2(2+0)/5 such that for all r>0 and
n e N, the following inequality holds:
MO (< 0,6y MLEEON
r+| 4| r+|4,|
Proof. The left-hand side of inequality (2) is evident. We will prove
the right-hand side in two steps. If |r—|2,[|>er where 0<e<1, then

)

M, ()<M (r)/(er). In the case ‘I’ —|ﬂn ” <eér,  putting
R=r(l+¢)/(l-¢), we have [R—|[=|R-r)—(4,-r)|zer and
consequently M, (r)<M, (R)<M (R)/sSR<M(R)/& . Hence,

rM.n(r)%ML[i—jr]. @)

Analogously,  if ‘r—|/1n| > g|A,|  then Mln(r)SML(r)/(gMnD. If
r=|4,]|<£|4,| then, by taking 1 =r+2¢[4,|, we get | —|4,[|>¢]4,,
| 2| <r/(1—¢) and

M, (N <M, (5) <M (1) &4, <M (@+e)r(A—2) e,
Thus, |4,|M, () <M (A+&)r/(l-¢))/e. In view of this and by using

formula (3), we obtain the right-hand side of inequality (2). The theorem is
proved. »
2.10. Infinite products of real numbers. Let (u,):N—>R be a

certain sequence of complex numbers. The symbol

Up Uy cons Uy sone (1)
is called the product of the terms of the sequence (u,) or an infinite product of
real numbers u, and it is denoted by [5, 14, 22, 24, 28, 45, 47, 51, 54]:

TTu. . @
k=1

This symbol is also called an infinite product. In this case,
n
P =] Juc =t Uy .oy,
k=1

is called the n-th partial product of the product (1). If there exists the limit
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lim p, = p#0;0, @)
Nn—o0
then the product (1) is called convergent, and the number p is its value. This
fact is written as [5, 14, 22, 24, 28, 45, 47, 51, 54]:

o= Tu,. %)
k=1

Sometimes, the sequence (p,) of partial products is also referred to as an
infinite product, as well as the operator that assigns the limit (3) to the sequence

(uy) .

Example 1. The product Hl 1-1-... is convergent and Hl 1,

=1 =1

because p, = Hl 1-1-..-1=1.

k=1

Example 2. The product H( 1)* is divergent, because
=1

n
=1_[(—1)k =(=1)" and the limit (3) does not exist. At the same time, the
k=1

product ﬁ‘(—l)k‘ converges.
k=1

Example 3. The product H(l 1/k?) = H(l 1/(m+1)?%) is
k=2

convergent and H(l—l/ k?)=1/2, because

k=2

n k% — (k+1)(k D _
1-1/k?

e =115 11

_132435 465768 (1-3(n-) o =D+
2.2 33445566 77 (n-2)(n-2) (n-1)(n-1) nn
_(n+) 1
2n 2
Theorem 1. If the product (2) is convergent, then u, -1 as n — .
Proof. In fact, because u, = p,/ p, ;- »

Example 4. The product HZkilo

k=1

is divergent, because
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lim 2k +10 iy

k—a0 k2
Theorem 2. The product (2) with u, >0 converges if and only if the

series z Inu, converges.
k=1

n
Proof. Indeed, it follows from the equality pnzexp[ZInukj,

k=1
n
Y Inu =Inp,.»
k=1

Example 5. The product [](1-1/k)e’* is convergent, because
k=1

In((l—l/k)el”‘)=%+In(1—1/k)=2—i2+o( L j k—o0, and therefore

K2
the series iln((l—l/k)e”k) converges.
k=1

Remark 1. If one of the terms of a sequence (u,) equals zero, then

according to the definition, the product (1) is divergent. In the next section, we
will provide a slightly more general definition of the convergence of an infinite
product, so that the product can be convergent even if a finite number of its
factors are zero.

2.11. Infinite products of complex numbers. The product of the

terms of a sequence (u,):N-—C or an infinite product of complex numbers
u, is called the symbol [5, 14, 22, 24, 28, 45, 47, 51, 54]

Up Uy oo Uy sy (1)
which is also denoted as:

1w @)

The product (1) is said to converge if for some n, there exists the limit
n

lim J] u.=p#0;00. (3)
|qﬁook:no-#l

In this case, the number p is called the value of infinite product (2) and this

factis written as: p=] Ju, .
k=1

Theorem 1. If the product (2) converges, then u, -1 as n — oo.
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Theorem 2 ([5, 14, 22, 24, 28, 45, 47, 51, 54]). The product (2)
converges if and only if the series

> Iy, (4)
k:n0+l
converges fo some n, € N and the value Inu, :=Inju,|+iargu, € Lnu, .
Proof. Indeed, the sufficiency follows from the equality

pn = exp(zlnukj '
k=1
Let us prove the necessity. Since u, — 1 as k — oo, it is sufficient to show that

the series (4) converges if, for large &, the branch of In near the point 1 is
understood in such a way that it takes the value 0 at that point. By the Cauchy
convergence criterion for the sequence, we have

(Ve>0)(EIn')(Vn > n')(Vm > n‘): |pn/ P —1<e,
because p, — p=0;00. Therefore, Re(p,/ pn.) >0. If In is the main
branch of the logarithm and s, is the n-th partial sum of the series (4), then
Inp,/p.=s,—-s.+20,7, g, €Z. Since p,—>p, we have
P,/ p.— p/ P.- Therefore, by the continuity of the principal value of the
logarithm in C, , the sequence «, =S, -s. +2g,7i has a finite limit. The
series

D Inu, +27i(gy — 9y 4)

k=n®+1

is convergent, because its partial sums are equal to s, —s . +27i(9, —gn,).

Therefore, g, —9,, —0. However, g, €Z. Thus, g, =g,_, for large &,

and the series (4) converges. The theorem is proved. »
Theorem 2 can be stated as follows: the product (2) is convergent if

and only if the series (3) is convergent, where Inu, :=In|uk|+iarg u, and
argu, €[—; ) for all sufficiently large k .
An infinite product (2) is said to converge absolutely if the series (4) is

absolutely convergent [5, 14, 22, 24, 28, 45, 47, 51, 54]. An absolutely
convergent product is convergent. At the same time, absolute convergence of

the product (2) is not equivalent to the convergence of the product ﬁ‘u k‘ :
k=1
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Theorem 3 ([5, 14, 22, 24, 28, 45, 47, 51, 54]). In order that the
product (2) with u, =1+q, be absolutely converges, it is necessary and

sufficient that the following series converges:

Sl - )
k=1

Proof. If the product is absolutely convergent, then it is convergent,
and therefore a, >0, arg(l+a )—>0 and In(l+a )=(1+o()a, as

k — . Hence, the series (5) is convergent. Conversely, if the series (5)
converges, then a, -0 and In(1+a,)=(1+o0(1))a, as k —>oo. Thus, the

product (2) is absolutely convergent. Theorem 3 is proved. »

The product r, = H u, is called the remainder of the product (2). If
k=p+1

all u, #0, then the product (2) is convergent if and only if each of its
remainders is convergent. In this case, », —1as p —oo.

2 ©
Example 1. Since Zk =1- 21 and the series z 21 is
ke +1 ke +1 ke +1
© 2
convergent, then the product H 71 is absolutely convergent.
k=1 K~ +
. k? 1 & 1
Example 2. Since ——=1-— and the series » — is
ke +1 ke +1 ke +1
© 2
convergent, then the product H (-1 k‘i( 1 is convergent. In this case, the
k=1 +
k2 k2

product [ ](-1)*
k=1

exists.

diverges, because the limit lim(-1)* —— does not
k? +1 ke k?+1

2
for k >3, then the

Example 3. If u, =2, U, =u, =0 and u, =
p i 2 = U3 ]

product (2) converges and l_Iuk =0.
k=1
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Example 4. The product H(l+ ! j is absolutely convergent,
k=1

k? +i
because ! |— ! and the seriesi ! converges
K +il k41 =l ]

Example 5. Since kz(el’k —1)—>oo, the product sz(el“‘ —1) is
k=1
divergent.
2.12. Infinite products of functions. Let (u,) be a sequence of

functions holomorphic in the domain D . Then the infinite product
[Tu @) 1)
k=1

is called an infinite product of functions. For each z € D an infinite product of
functions (1) is a numerical infinite product [5, 14, 22, 24, 28, 45, 47, 51, 54].
An infinite product of functions (1) is said to converge (absolutely converge)
on a set Ec D if for every zeE the corresponding numerical product
converges (absolutely converges). The product (1) is said to uniformly
converge on a set E— D if for some n, e N the sequence [5, 14, 22, 24, 28,

45, 47, 51, 54]
n
ﬂ'n(z)z H Uk(Z)
k:n0+l
uniformly converges on E to the function 1, (z). In this case,

Mo
p(2) =1, (2)][ Juk(2) is called a value of a product (1) and this fact is written
k=1

as: p(z) =Huk(z). Thus, the behavior of a finite number of factors u, does
k=1
not affect the nature of the convergence of the product.
Theorem 1 ([5, 14, 22, 24, 28, 45, 47, 51, 54]). If the functions u, (z)

are holomorphic in the domain D < C, and for some n, €N and a certain
choice of values of Inu, (z), the series

3 Inu, (2) )

k=ng+1
uniformly converges on a compact set Ec— D, then an infinite product (1)
converges uniformly on E .
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Proof. Indeed, let ¢, (z) is the sum of series (2), and let ar(z) =e“*,
Then

a(2)- [ u(2)-

k=n0+1

a(z)[l—exp[ Zn: Inu, (z)- i Inuk(z)B‘:

k=ng+1 k=ng+1

=|a(z)| (1 exp( k;uank D‘

If the series (2) converges uniformly on E, then u,(z) >1 as k& — .

Therefore, Inu,(z) converges for large & to the value of the branch
Inz =In|z|+iargz with argze(-z/2;7z/2) in the right half-plane.
Consequently, ¢, and o are continuous and bounded functions on E.
Finally, it remains to use the inequality ‘l—e‘w‘£2|w| for |w|<1/2. The

theorem is proved. »
Corollary 1 ([5, 14, 22, 24, 28, 45, 47, 51, 54]). If there exists a

convergent positive numerical series ibk such that at least one of the
k=1
following statements are true:

(vzeE)(Vk):|Inu (2)|<b,,
(vzeE)(Vk):|a.(2)|<by,
then the product (1), where u,(z)=1+4a,(z), converges absolutely and
uniformly on the compactset Ec D .

Example 1. Since the series ze‘ﬁ converges, the product
k=1

o0

H(l—ze’ﬁ) converges absolutely and uniformly in every U (O;R), where

k=1
O0<R<+00.

I

e as k —oo uniformly in

Example 2. Since cos§—1=(1+ o(1))

Z in every closed disk U(0;R), O0<R<+w0, and the series Zl/k2
k=1
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converges, then the product Hcosz/ k converges absolutely and uniformly in
k=1
each such disk.
2.13. Constructing of an entire function with prescribed zeros.
Infinite product representation of an entire function. An entire function f

with a sequence of zeros (4,) can naturally be constructed in the form
f(2) :H(l— z/ A,) . However, this product might be divergent. Therefore, a
k

slight modification of the construction is necessary. The functions
1-w, p=0,

E(w: p) = (1—w)exp(zplwk /kJ, peN,

k=1

are called the Weierstrass primary factors.
Theorem 1 ([24, 28, 31, 33, 45, 47, 51, 54]). The following
inequalities are valid:

INE(w; p)| <2w™™, jw|<1/2, 1)

Zw K| <

where In z is the branch of the logarithm in the right half-plane that takes the
value O at the point z=1.
Proof. Indeed, (1) follows from the inequalities:

Z Z w* < |W|p+1§,2’k = 2w, [w|<1/2.

k= p+1 k=p+1 k=0

In 2|w| , w =172, (2)

InE(w; p)| = |-

In addition, using exp(—|z|) <|exp(z)| < exp(|z|) , we obtain

P
= el BRTEND N T

k=1
The theorem is proved. »
Theorem 2 ([24, 28, 31, 33, 45, 47, 51, 54]). Let (4,) be a sequence

of nonzero complex numbers such that 0<|4 |+ as k—oo, and let

In

(p, ) be a sequence of nonnegative integers such that the series
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» px+1
ol

converges for every r > 0. Then the product
Pk z i
i)

zl
L(z) = HE(z/ﬂk P) = H(l—— @)
k=1

converges uniformly on every compact set in C, the function L is an entire
function and the sequence (4, ) is a sequence of zeros of L.

Proof. In according of Theorem 1, we have
INE(z/ A p)|<2(r 1| AP, |2 <1, [A]=2r.

Therefore, the product (4) converges uniformly on every disk U(0O;r),

O<r <+oo. Hence, the function L is an entire function. Theorem 2 is
proved. »

Corollary 1 ([24, 28, 31, 33, 45, 47, 51, 54]). For every sequence
(4) that has a unique accumulation point at infinity, there exists an entire

function for which (4, ) is a sequence of zeros. In particular, such a function is

given by the product
il[ z !
i Ay
f(z)= zmH(l—iJeFlJ
A #0 Ak

where m is the number of terms of the sequence (4,) that are equal to zero,
and (p,) is a sequence of nonnegative integers such that the series (3)
converges forall r > 0.

Remark 1. If there exists an entire function f for which (4,) is the
sequence of its zeros, then there are infinitely many such functions. For
example, functions of the form f(z)=e’f(z), f,(z)=e"f(z) and
others.

Example 1. Let 4, = k?. Then the series (3) converges for all p, =0,

and L(z) :H(l— z/k?) is an entire function for which the sequence (4,) is a
k=1
sequence of its zeros.
Example 2. Let A, =K. Then the series (3) converges for all p, =1,
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and L(z) =] J@-z/k)e’* is an entire function for which the sequence (%)
k=1
is a sequence of its zeros.

Example 3. If 4, = i’ﬁ then the series (3) converges for all p, =3

and L(z)= H(l z/f)exp[d_ Z(j_j +%(%j] is an entire

function with a sequence of zeros (4, ).
Example 4. Let (4,) be an arbitrary sequence of nonzero complex
numbers such that 0<|A4 | +o. Then the series (3) converges for every

r>0and p =k-1,where L(z)=] JE(z/ 4:k-1) is an entire function for
k=1
which the sequence (4, ) is a sequence of its zeros.
Theorem 3 (Weierstrass). An entire function f =0 may be

represented in the form

f(2)=2"e"@ [ Ez/ 4:p) =2 eg(Z)H[l—ZJexp{z z! J ©)

0 I 0 ) Jlkj
where g is an entire function, A4, are all nonzero roots of f, m is the
multiplicity of the root at the origin, p, are nonnegative integers such that the
series (3) converges for all r>0 (if f has a finite number of zeros, then all
P =0).
Proof. Indeed, according to the uniqueness theorem, if a function
f £0 has infinitely many zeros, then the set of zeros of the function f must

have a unique accumulation point at infinity. Let us denote the product on the
right-hand side of equality (5) by L(z). Then, the function

h(z) = f(z)/z"L(z) is entire and has no zeros in C . Let

Then h(z) =exp(g(z)), which proves Theorem 3. »
2.14. Self-control questions.
1. Formulate the definition of an entire function.
2. Formulate the definition of the maximum of the modulus of an entire
function.
3. Formulate and prove Liouville’s theorem.
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4. Formulate the definition of an entire transcendental function.
5. Formulate and prove the Hadamard Three Circle Theorem.
6. Formulate the definition of the maximum term of an entire function.
7. Formulate the definition of the central index of an entire function.
8. Describe the construction of Newton’s polygon.
9. Formulate and prove the theorem on finding the maximum term and central
index.
10. Formulate and prove the theorem about the relationship between the
maximum term and the central index.
11. Formulate and prove the theorem about the relationship between the
maximum term and the maximum of the modulus.
12. Formulate and prove the theorem about inequalities between the maximum
term and the maximum of the modulus.
13. Write and prove the formula for finding the maximum of the modulus of an
entire function with positive Taylor coefficients.
14. Formulate the definition of an @ -type of an entire function.
15. Prove the theorem on finding @ -type of an entire function.
16. Formulate the theorem on the approximation of a convex function by the
maximum term of an entire function.
17. Write the Poisson and Schwarz formulas.
18. Write Jensen’s equality.
19. Formulate the definition of an infinite product, its convergence and absolute
convergence.
20. Formulate and prove the theorem on the necessary condition for the
convergence of an infinite product.
21. Formulate and prove a criterion for the convergence of an infinite product.
22. Formulate and prove a criterion for the absolute convergence of an infinite
product.
23. Formulate the definition of an infinite product of functions, its pointwise,
uniform and absolute convergence.
24. Formulate and prove the theorem on sufficient conditions for the absolute
and uniform convergence of an infinite product of functions.
25. Formulate the definition of a Weierstrass primary factor.
26. Formulate and prove the Weierstrass theorem on the expansion of an entire
function into infinite product.

2.15. Exercises and problems.
1. Determine if a given function f is entire:

1. f(z)=2z+1. 2. f(z)=cosz.
3. f(2)=z+1/7. 4 f(z)=221
z+1

84



5 f(z)=z", neN.
7. f(z)=sinz.
9. f(9)=z.
11. f(z)=Rez?.
13. f(2)=22.
o 2%

15. f =) —
@ kZ_;(1+1/k)kZZ

6. f(z)=1/z.

8. f(z)=¢e".

10. f(z)=tgz.
12. f(z)=(Rez)?.
14. f(2)=|7.

) 2k

16 f(Z) :émz

. Find the maximum of the modulus of an entire function f :

2
1. f(z)=1+7°.
3. f(z2)=e?.
5. f(z)=e +22.
7. f()=e% —z.
9

. f(z):e’23 -2z.

11. f(z)=sinz.

13. f(z)=e""?.

3. Prove that (here z=x+1y):
1. Resinz=sinxchy.
2. Imsin z=cosxsiny.
3. Recosz=cosxchy.
4. Imsinz=-sinxshy.
5
6
7

. [sin z|=\/m.
: |chz|:\/m.
.|cosz|:m.
. Jsh z|=\/m.

. sh(|lm z|) <[sinz|< ch(|lm z|) .

© ©

10. el <e?<el, zeC.
11. sh(||m z|)s|cosz|3ch(|lm z|)

12. [sinr|<[sinz|<shr, |z|=r.
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2. f(2)=¢e?.

4. f(z)=1-32°.

6. f(z):eZZ +1+2z.
8. f(z)=e% —32%.

10. f(z) =g
12. f(z)=cosz.

14. f(z) =7
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13. |cosr| <|cosz| <chr, |z|=r.

2e—2|mz . —2Imz
14. T <li-tgz< ety Imz>0.
2e—2|mz . -2Imz
15. T <li+tgz< T Imz<0.
2e—2|mz . —-2Imz
16. =T <li—ctgz|< ipeTr Imz<0.
2e—2|mz . —-2Imz
17. T <li+ctgz|< T Imz>0.
4. Find the @ -type of an entire function f :
1. f(z2)=1+2z, ®(2)=1+z.
2. f(z)=¢", ®(z)=e*
3. f(z2)=¢, d(2)=1+2z.
4. f(z)=¢*, D(2)=e€"
5. f(z)=¢, ®(z)=¢"
6. f(2)=12, q)(z)—eZ
7. f(2)= , D(2) =
kz:(;(Zk 1)k Z(k +1)¢
8 i (z)—flﬁzk
' =3k + 1)k' !
iek ©
9. f(2)
o K! k)'
10. f(z)= :Zk—k

k=0

5. Investigate on convergence the infinite products:

w 1
1 []e"-
n=1

o0

2 15

n=1

n +2|'
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5. H e”1 . 6 ﬁm +3i

1t i in*+2 "
n
7. H(l——). 8. H(l——)e” .
n=. n n=1 n
" 1\ L " ’i
9. 1-=|e" 2n* 10. 1- =
H( nj 11( 1+ nj

6. Investigate on absolute and uniform convergence the infinite products of
functions:

LTl 1+—2 |, 2. TTl 1+,

i) 105

3 T 142142 2 TT 1-2(1-cost
H +zIn =7 ) H —2|1-cos— | .
n=1 n=1

5. = (k+1)|n(k+l) 6. = 14 z .
1;! (k +1)In(k +1)je ]r;l[ ex/ﬁ
= 1 1 ® z i+£

7. 1+2z|sin=—=|]. 8. 1-— |evk 2%
[e+o{om?-2) %)

o] 1—z(1—cos%j]. 10. H(1+ z(sin%—%n.
n=1 n=1

- .z _(k+1)|22(k+1) o
11. H(nklnz(kﬂ)} ) 12. H(l 2"z).

7. Prove the statements:

® 1 ® 1

® X smx z T 2

4. — =<

E[ E!cos2k+l -

© 1 = 9k? 27
5. —_ 6.

E[ k(k+1)j 3 Eg 21 383
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H(l q2k) w 1 w
7. =N gilenz, 8. jx‘xdx=2n‘“ :
H(l g2ty k0 0 n-1

k=1

9. f(X)=1—0qx)f(qx) if f(x):ﬁ(l—qu), xeR, |q|<1.
k=1

k(k+1)/2

10 [Ja-g0=>-3 " ¥ xeR, |q<1.
k=1 k=0 i
(9" -1
1
0 k
1t > & xeR, [of<1
[Ta-d% “°T]a-a"
k=1 j=1

12. ﬁ(l—qk)= i (_1)kq(3k2+k)/2, |q|<1.
k=1

=—00

8. Find the zeros of a function f and their orders:
1. f(2)=(z*-7?)sinz. 2. f(z)=2%sinz.
3. f(2)=(z—n)sinz. 4. f(z)=sinz+sin’z.
5. f(2)=2(e*-1). 6. f(z)=e* —1.
7. (z )_5'” Z. 8. f(z)=sin3z—3sinz.
9. f(z)=e""-1. 10. f(z)=e*" -3¢’ +2.
11. f(z2)=2* -2 -8z2+12. 12. f(z)=zshz.
9. Find the counting functions n(r) and N(r) of a sequence (4,) if:
1. Anzn—l,neN. 2. ﬂnzgn,neN.

4 7
3. 2,=3%n, neN, 4. 4, =i¥n, neN.
5. 1,=2"", neN. 6. 1,=¢€", neN.

10. Let (4,) be a sequence of points on the circle U(0;1) satisfying
Z(l—|/1k|) < +o0, Prove that the Blaschke product

k
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|B(z)| <1.

2.16. Individual tasks.

B(2) = 1‘[1 Mﬂk

uniformly and absolutely converges on every compact set from U(0;1) and

1. Determine if a given function f is entire:

1. f(z2)=¢"
3. f(z)=¢”

5. 1(2)=— sinz

Z —7Z'Z
0 k

7 1()= Z(lzk),( 21

0

9. f(2)= Zn

i+n "
n

11. f(z)=Z3ki"(z+i)3k .
k=1

o e2ik
13. f(2)=)> =7
o K

© 22k
k=0 -

17. f(z)= 0042

19. f(z):i(zjk .
chJ_

21. f(2)= Z

0 n

23, f(z):Z%.

n=1 N

25. f(2)= Z

1"(2+n)'

2. f(z)=cosv/z .
)

sinz
N

8. f(z):fz—k'zk.

i+n Zn
o .

6. f(2)=

10. f(z)= Zz“

12. f(2)= Zln(1+e’k Yz +i)¥ .
k=0

0 22k 2

14.
kz 2k — 1)|

16. f(z)=/zsinz.

18. f(2)=> -2
20. f(z)=Ye"2".
22. f(z):Z(
2. f(z):f‘{['””jnz”.
26, f(z):i[
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27. f(z) =/zsinz. 28. f(z)=12C082

ZZ
29fz—zs’iitdt 30. f(z)=3 KLsx
. ()_£ . . (z)_gz?z.

2. Investigate on convergence the infinite products:

o 1 i 0 l _i
1 H(l——je n 2. H(1+—je n
n=1 n n=1 n
w 1) -1 w 1) -L
3 1+ —|e VK 4, 1-— e D
” 1) —teb w 1) L.
5 1+—— |e ¥n 20 6 [1—— gk
H «/ﬁj 1_! k
” 1) -ttt w
7T 1+—=|e ¥ 2 o 8 [oi+=
1 %J [Tq+5
© 1 E © l _i
9. H(l——zje“ . 10. H[u—je "
n=1 n n=1 n
1
0 2 H 0
n-—+1 en
11. . 12. .
n=1 n2 +2i El_l
n2
1
13 7111 "o 14 TT-&
. H - e . . H T
n=1 |(—2:|__|_72
k
i 1 = in? —/5i
15. [ Jcos®=. 16. | |———.
g k Q—Zin2+3
» k*+2 iy L)
17. : 18. .
Ek4+l Ezm
0 %) 2
19.an—+1. 20. T] n+21.
na \N+3 n=l n 4sin=
n
i+ 2" ® i
21. . 22, 1+ .
gznsn H( 1+n2j
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23H

o 2
n° -4
. 24. .
n®+1 ln:!nz—l

o N+l 2
X
25. cos—. 26. dx
U 2" 11-!1+ X
( 1)n+1
27. 28.
M) I
= n —4i
20. TTn " . 0. [T
H H\/ﬁ +2i
3. Find the zeros of a function f and their orders:
1 f(z )_Z 9 2. f(z)=2%sinz.
3. f(z):zcos z. 4. f(2)=(2*+2z+1)(e* -1).
5. f(z) = (22 +1)°tgz. 6. f(z )_S'” Z.
z°
1
7. f(z):(“_z?z. 8. 1(2)=7; ey
9. f(z)=coszchz. 10. f(z)_sm52—53inz.
11. f(z)=ztg’z. 12. f(z)=e** —3e’ +2.
13. f(z)=zshz. 14. f(2)=7-7>-8z+12.
15. f(z)=e""-1. 16. f(z)=sinz+sin’z.
- 2 _
17. f(2) =sin(z-1)cos* 2~ 18. f(z)= (20
2 cos(zz/2)
_ 2
19. f(z)= 12082 20. f(2)=Tsint.
1+cosz z 1z
1
21. f(z)=e* -1. 22. f(z)=1z(e"-1).
2, 53 2 V25 _1)\3
23. f(z)ZM, 24, f(z)zw.
1+ cos(zz) z°—4z7+3
25. f(z)=(z-1)"(1—cosz). 26. f(z)=12°sinz.
27. f(2) =cosz®. 28. f(z)=cos’z.
29. f(z)=cos(z—-7). 30. f(z)=cos(z—1).
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4. Construct an entire function f for which the sequence (4),.y is a

sequence of its zeros:

1. A =k¥.

3. A =~k

5 A4 =Ink, ke N\{1}.
7. A =1+iJk.

9. 4, =k +ik'2.

11
13
15
17
19
21
23

25.

27
29

A =kIn?k, ke N\{1}.
2 =K

A =k +ivk.

. A =klnk.

. A =k?Ink.

A =k +4—ki.
. A =27ki.

2. & =k.

4. =4k .

6. 4, =e¥ .

8. A =k?+ik*.
10. A, =kY® +ik¥*.
12. A =In"k, ke N\{1}.
14. A =¢e*.

16. A =idk* .

18. 4, =(1+2i)Vk .
20. A =~k +i.
22. A =2k +ki.
24. 2, =K.

26. A =k—Ti.

28. A, =7ki.

30. A =k*+k+i.



Chapter 3. Growth characteristics of entire functions

3.1. Order and type of entire functions. The order of an entire
function

f(z)=> fz" 1)
k=0
is called a number p = p; = p[ f] determined by the formula:
——1In"In" M, (r) . Ina, a>1,
p=Tim——7 In*a=
r—>+® Inr 0, O0<axl.

In other words, the order of an entire function f is the greatest lower bound of

those values of p; €[0;+00] for which (3c,)(VzeC):|f (z)| §c1exp(|z|pl) :

that is (3r, €[0;+00))(Vz,|z| 21, ):| f (2)|< exp(|z|pl). The order of an entire
function f isequal to zero if and only if
(Vp, € (0;+00) (3, €[0;+00))(Vz, |2 2 1 )| f (2)| < exp(|z|pl) .
The order of the function f isequal to +co if and only if
(Vp, €(0;4+0)(32€C):| f (2)| 2 exp(|z|"l ) .

The order of the function f is equal to the number p € (0;+c0) if and only if
the following conditions are fulfilled:

1) (Vo> p) (3, €[0;+0)(Vz,|2| 2 1) :| f (2)| < exp(|z|”1) ;
2) there exists a sequence (z,), z, — o, such that

(V2 < p)(3ko € N)(Fh ko ): | (2,)| = exp (2| ).

If p e (0;+0) be the order of an entire function f , then the number
o=c[f]=0c[f;p], defined by the formula
—In"M((r)

o=Ilim———-—=,

r—oo rp

@)

is called the type of the function f .
The type of an function f of order p e (0;+o0) is equal to zero if and
only if
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(Vo € (0;+0))(3n, €[0;+0))(Vz,|2| 2 1, )| f (2)| < 3 exp(|z|p) :
The order of the function f of order p e (0;+o0) is equal to +oo if and
only if there exists a sequence (z,), Z, —>o, such that

(Vo, €(0;+%))(Tk, € N)(Vk 2k, ):| f (2, )| 2 0 exp(|zk |p). The type of the

function f is equal to the number o e (0;+00) if and only if the following
conditions are valid:

1) (Vo, >0)(3r, e[0;+00)(Vz,|2| 2 1y ):| £ (2)) Salexp(|z|p) ;
2) there exists a sequence (z,), Z,—oo, such that
(Vo <o) (T eN)(Vk 2 ko ):|f (2,) 2 o exp(|zk|p).

If c=0, O<o <+ and o =+x, then f isan entire function of
minimal, normal or maximal type, respectively.

Remark 1. Sometimes, it is wuseful to consider the type
o=limrIn" M, (r) of a function f with respect to an arbitrary number

r—oo

P, € (0;+00) , which does not necessarily equal its order. In this case, the type

of the function f is equal to o with respect to the formal order p,.

Typically, the formal order considered is not less than the usual order of the
function.
Remark 2. If the function f is not constant, then

—InInM(r) ——InM(r)
p=Ilim——— and o= lim ——~.

r—+o0 Inr r—>+o0 r?

Example 1. If f(z)=e", then
| (re)| =

rcosé@

0 . - H 1 i i
erel | rcos@+irsing zercose|cos(rs|n(9)+|S|n(I’SIn 49)|=e )

e

N ; . InInM(r)
((r)=e"and p= lim T:l.
r—+oo

Example 2. If f(z)=e™ ,where r=se" «C and ne N, then
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ind

ese"”r"e esr”ei("”*V’) esr”(cos(n9+y/)+isin(n0+y/))

f(re”)|=

esrn cos(nd+y) (COS(Srn sin(nd + l//)) +isin (Sl‘n sin(n@ + l//)))‘ =

sr" cos(nG+y)

(cos(sr”sin(n0+z//))+isin(sr"sin(n9+w)))‘=e ,

_ esrn cos(NO+y)

M (r)= """ . Therefore,

InlnM  (r sr”
o= tim MMM () _ oy Inine
r—>+o0 Inr r>+o Inr
n
Example 3. If f(z):kazk is a polynomial of degree n, then
k=0
[T (@)|=|f||z]"@+0@) as z—>o, and M (r)=1+oD)|f,|r" as
r —+o0. Hence, p=0.

Example 4. If f(z)=eeZ , then Mf(r):eer . Thus, p=-+0.
Theorem 1 ([24, 28, 45, 47, 51, 54]). The order p of an entire
transcendental function f is defined by the formulas:
——InIng,; (r) ——Inv,(r)

p=lim ————==lim : @)

r—>+o0 Inr r->+o Inr

Proof. Indeed, from the inequalities 4 (r)<M;(r)<

<(1+1/ &) p; ((1+&)r), where £>0 and r=0, we consequently obtain
In 426 () <INM; (r) < (1+0())In g, ((1+&)r), r —+o0, and
Inln g (r) - InIn M (r) <

Inr - Inr
3 (1+o(®)InIn g ((1+£)r) In((1+£)r)
In((1+¢)r) " nr T,

Thus, the first of equalities (3) is proved, and the second follows from the first
if we taking into account that

Inyf(r)—Inyf(ro)gvf(r)j%zvf(r)ln%, O<r<r, 4)
0 0
e vi(®)
In g2, (r) = In gz (ry) j Toltzvf(r/e), r>re. (5)
r/e
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Theorem 1 is proved. »
Theorem 2. For every entire transcendental function f holds

——1In r
o= lim ’u—f(), (6)
r—>-+o0 r?
—v(r)
po < lim <oe”’. @)
r—>+o ~

Proof. Indeed, the equality (6) is proved in the same way as the first
equality in (3). The right-hand side of (7) we obtain from inequality (5). To
prove the left-hand side, let us denote the upper bound in (7) by s. Then, if

s<+o0, we have (Ve>0)(Ity)(Vt=ty): v, (t)<(s+¢&)t”. Therefore, as

r — 4o
r P
In gz (r) <(s+¢) [t dt +0() =(s+£)(1+0@) . »
Yo
1
Theorem 3 ([24, 28, 45, 47, 51, 54]). The order p and the type o of

an entire transcendental function f(z) = Z f z* can be defined by formulas

k=0
(in the first formula, we assume that [1/ 0| =+o0 and In(+o0) = +o0):
p=Tim KINK ®)
ko In[1/ £, |
0=Wi|fk|”’k. 9)

K—>-+o0 ep
Proof. Let us denote the right-hand side of (8) by p,. If p, <+,
then
(Ve>0)(3c,)(Vk=1): |f | <cexp((k/ (o, +&))Ink).
Therefore,

tint rate
w1 (r)<c exp —tInr |=cexp| —— |, r>1,.
pte e(p +¢)
Hence,
——Inin r
i e (D)
r—+% Inr

and we have p<p,. Prove that p,<p. If p=+c0, then this inequality is
obvious. Assume that p <+oo. Then, we have
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(Ve>0)(3c,)(Vr=0): M (r )<C19Xp( p+s)
Therefore, from the Cauchy inequalities, we obtain |fk| < clexp(—k Inr+ rp”)

forall r>0 and k>0. Put f=(n/(p+g))1/(P+8)

right-hand side has its minimum). Then

(since at this value r, the

Vk>0:fsexp—k In K + a :
k| SC

p+e p+e p+e

This implies that p, < and the equality (8) is valid. The equality (9) is
proved similarly. The theorem is proved. »
k
Example 5. If f(z)= Zz—kls where 7 e (0;+00) and
koo (7k+1)
s € (0; +) , then
_ 1 . 1+o0()
(Z‘k+l)k/s (Tk)k/sell(rs)

as k > . Hence, p=s and o =1/(zes).

0 2n

Example 6. If f(z2)= )Y ——
p (2) g(nﬂ)“’s

1

, Where s e (0;+o0) , then

=J(n+D"s’ k=2n
0, k=2n+1,
1 1+0()
2n = (n+1)n/s - nn/sells y N—co.
Thus, p=2s and o =1/(es).
Example 7. If f(z)= Z(k 1)k”n(2+k) ,then p=-0.
k=0
Example 8. If f(z)= Z (KD ,then p=0.
k:O
% k

Example 9. If f(z):Z z , Where s e (0;+x0),

= ((k+1)In(2+k))"
then p=s and o =0.
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k

Example 10. If f(z)=>" where s e (0;+x),

S ((k+1)/In2+Kk))

kis ’

then p=s and o =+x.

3.2. The Phragmén-Lindelof principle. This principle is analogous to
the maximum principle for unbounded domains.
Theorem 1 ([24, 28, 45, 47, 51, 52, 54]). Let the function f be

holomorphic in the half-plane C, = {z ‘Rez> O} , continuous on <C_+ and
(Ar),0<r, T+0)3p <)(3c,) (Vo € (—7/2;7/2))(VK) :
‘ f (rkei“’)‘ <c,exp(r’).
Then, if sup{| f (z)|:z €6C,}<c,, we have sup{ f (2)|:zeC }<c,.
Proof. Let p< p, <1, O<g<1and F(z)= f(z)exp(—sz*). Let us

consider a certain holomorphic branch of this function in C, (also denoted by
F). Then

sup{|F(2)|:ze0C, }<c,

supﬂ F(rke”")‘ pe (—7r/27r/2)} <c, exp(rf —er* cos(zp,/2)) -0
as k—>+oo, and by applying the maximum principle to semidisks
U, (0;r)={z:|z] <1, ,Rez >0}, for large k we have sup{F(z):zeC,}<c,.
Hence, |f (2)| §cl‘exp(—g zpl)‘ for ze C,, and passing to the limitas & — 0,

we obtain the required proposition. Theorem 1 is proved. »
Corollary 1 ([24, 28, 45, 47, 51, 52, 54]). Let 1/2<a <+, and let
f be a function holomorphic inside an angle

C(-n/2a;7/2a) ={z:|argz| < 7/2a} and continuous on its closure,
satisfying
(3(r),0< 1, T +0)(Fp < a)(3c,)(V o, |(/)| < 7/2a)(VK):
‘ f (rkei"’)‘ <c,exp(r’).
Then, if sup {| f(2)|:z€0C(-7/2a; 7[/2(2)} <c,, we have
sup{f (2)|:zeC(-7/2;7/2)}<c,.
Proof. To obtain this corollary, it is necessary to consider a

holomorphic branch of the function F(z) = f (z¥%) in C, and apply Theorem
ltoit. »
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Corollary 2. If an entire function of order less than 1 is bounded on
the real axis, then this function is constant.

Corollary 3. If an entire function of order less than 1/2 is bounded
on the positive real axis, then this function is constant.

Corollary 4. If an entire function of order less than o is bounded on

the sides of an angle of opening 7/ p , then it is bounded inside this angle.

Example 1. An entire function f(z)=e’ has the order p=1 and is
bounded on the imaginary axis.
Example 2. An entire function f(z) =cos+/z has the order p=1/2

and is bounded on the positive real semiaxis.
3.3. p-trigonometrically convex functions. Let O0<p<+4o. A

function h:[e; ] —[—o0;+x) is called p -trigonometrically convex on the
closed segment [a; ] if for any 6, 6, and 6,, a<6<0<6,<
6, —6, </ p, holds [13, 24, 28, 45, 47, 51, 54]:
s_in p(6, -0) +h(8,) s_in p(6-6) _
sin p(6, —6,) sin p(6, - 6,)
This inequality can be rewritten as:

h(8)sin p(6, —6,) +h(6,)sin p(€—6,) +h(6,)sin p(6, —0) <0, (2)
or in this form:

h(©) <h(,) (1)

h(8,)sin pd, —h(8,)sin pb,

h(0) < Cos pb +
e Y P
N h(6?2)cos_,06?1—h(6’1)cos,06?2 sin po). 3)
sin p(6, —6,)

A function h:(e; ) —[—o0;+0) is called p -trigonometrically convex on the
open segment (a; ) if it is p-trigonometrically convex on every closed
segment [a;d] < («; B) .

Theorem 1. If a function h=—oo is p-trigonometrically convex on
(a; ) then h(e; ) < (—0;+0).

Proof. Assume that there exists a point & €(c; ) such that
h(6,) # —o. Since h#—o, a value 6, can be chosen such that there exists
0, € (a; B) satisfying h(8,) #— for 0<6, -6, <7z/p. Then, from (1), we
obtain h(@) = —oo for 0e(6:6,). Further, by putting
0=6,, 0=6,0,=60,<(0;/),0,—6,<x/p in (1), we get h(,) =—oo. This
contradiction proves the theorem. »
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Theorem 2. Let h=—co be a 27 -periodic and p -trigonometrically
convex function on (—oo;+oo). Then
(vel € IR): h(@)+h(@,+z/p)=0, 4)
and
min{h(6): e (—o0;+x)} >—max{h(d):0 e (—0;+x)}. (5)
Proof. To obtain (4), it is sufficient sending 6, to 6, +7z/p in

inequality (2). The inequality (5) follows as a consequence of (4). Teorem 2 is
proved. »
Theorem 3 ([13, 24, 28, 45, 47, 51, 54]). If a p-trigonometrically

convex function h=—ooin an interval (o; B) is bounded, i.e., |h()| <K for

0 e (a; ), then it is a continuous function of @ e(a; ), and it satisfies a
Lipschitz condition:

(3¢, >0)(V(t;7) e (o; B)x(ex; B)): |h(t) — h(T)| <c |t —z'| .

Theorem 4 ([13, 24, 28, 45, 47, 51, 54]). Let h=#—o be a p-
trigonometrically convex function in an interval (e«; ). Then it has the right
hand h’ (@) and left hand h'(¢) derivatives at every point ¢ e (;f3) .
Moreover, a) h! () =h;(p+0);b) ' (p) =h'(¢-0);c) N (p) <h(p).

For a twice continuously differentiable and 27 -periodic function h to
be a p-trigonometrically convex, it is necessary and sufficient that

h"(8) + p*h(6) >0 for OeR.

Theorem 5 ([13, 24, 28, 45, 47, 51, 54]). In order that a 2z -periodic
function h:R — IR be a p-trigonometrically convex function on [0;27], it is

necessary and sufficient that it can be represented in the form

h(¢)=———— | cos 0 t|—z)ds(t), 0 €[0;2

(0)= 2psmpj p(lo—t|-7)ds(t), 0 <[0;27],
for noninteger p, where S is a nondecresing and continuous from the left on
the segment [0; 2] function, and for integer p in the form
[
h(6) = Zi j (0-t)sinp(t—0)ds(t) +c,e”’ +c e, 0 [0;27],
Y
0-2rx

where ¢, is constant and S is a nondecresing and continuous from the left on
[0;27r] function satisfying the condition
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2r
j e'P*ds(x) =0.
0

Example 1. A function h(€)=cosé is 1-trigonometrically convex on
(—o0;+e0), because h"(0) + p*h(8) =—cos@+cosO =0.
3.4. The indicator function. The indicator of a function f :C —C is
called a function h(€) =h, () =h(&; f)=h (&; f) defined by [13, 24, 28, 45,
47, 51, 54]:
_ |n\ f (re“")\
> :

h(6) = lim —— €N

where p e (0;+0) is a given number. If f is an entire function, then by p

take usually its order and sometimes even its formal order.
Theorem 1 ([13, 24, 28, 45, 47, 51, 54]). Let f be an entire function

of normal type with respect to the order p e (0;+c0). Then the fundamental
relation for the indicator function holds
h(0) <H(6;6;;h(6,);6,;n(5,)) , )
for all values 6, 8, and 6 in [0;27] such that 8, -6, <7/ p, where
H(6:6;h;0,h,) =
_ hlsin_,oe2 —h, sin p6, oS o0 + h, cos_,oel —h, cos pé,
sin p(6, —6,) sin p(6, - 6))
Proof. Let us consider an arbitrary holomorphic branch of the function
w(z)=exp((a—bi)z”) in an angle C(0;27)={z:0<argz<2z}. Then
h(6;w) =acos pf +bsin p@. We choose a and b such that h(6,;w)=h
and h(6,;w)=h,, where h, =h(g;;f)+05, h,=h(6,;f)+5 and 6 >0, by
solving the system:

sin p@ .

acos pd, +bsin p6, =h,
{acos,oa2 +Dbsin pg, =h,.
We find that
a h, sin p@, —h, sin p6, b h, cos p&, —h, cos pb,
sin p(6, —6)) , sin p(6, - 6,)

Thus, for such constants a and b, we have h(d;w)=H(6,6,,h,6,,h,) . Let

w(z) = T (2)exp(—(a—bi)z”). Then
h(@:y) = h(8; T) —h(6; @), N(B;w) =h(By:w)=—5 .
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By the Phragmén-Lindelof principle, the function y is bounded inside an
angle C(6,;6,). Hence, h(8;w)<0,0€[6;6,]. From this, due to the

arbitrariness of the choice of 6 >0, we obtain the required statement. Theorem
1is proved. »
Corollary 1. If f is an entire function of normal type with respect to

the order pe(0;+00), then its indicator function h is a continuous, 27 -
periodic p -trigonometrically convex function on R .

From the definition of the indicator function, it follows that for an
entire function f of normal type with respect to the order p e (0;+), the

following holds [13, 24, 28, 45, 47, 51, 54]:
(VO €[0;27])(Ve > 0)(3e)(vr 2 0):| £ ()| < ¢, e ((h() + £)r7)..

Along with this, the following theorem by S. Bernstein holds true:
Theorem 2 ([13, 24, 28, 45, 47, 51, 54]). If f is an entire function of

normal type with respect to the order p € (0;+x), then
(Ve >0)(3e)(VO [0;27])(vr 2 0):| £ ()| < ¢, exp((h(6) + £)r”)..
Corollary 2. If f is an entire function of normal type o with respect
to the order p, then max{h(6):0€[0;2z}=0".
Corollary 3. For every entire function f of normal type o with
respect to the order p holds —o<h(d) <o for 6 [0;27].

Example 1. If f(z)=e?, then ‘f(rei‘g)‘ze”"se, M, (r)=e",

InInM (r

r—>+0 Inr

and

h; (0) = =c0sd .

—_In|f(re”)| _jpereme
lim = lim
r—>-+0 r* r—-+% r

Example 2. If f(z)=e™, where r=se¥ eC and neN, then

i n Inin M, (r
‘ f (relg)‘ — @St cos(nd+y) M, (r)= esr" L p= lim —f() =n and
r—>+00 Inr
S In| f (reie)‘ — In esr“cos(nHH//)
h; (@)= lim —— = lim =scos(nfd+y) .
r—-+o r r—-+o0 r

Example 3. Let f(z)=sinz.Then p=1 and h,(6) =[sin¢|.
Example 4. Let f(z)=cosz.Then p=1 and h, (6) =|sin4|.
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3.5. Supporting functions of convex sets. A set D is called convex
if, together with any two of its points, it also contains the line segment
connecting them. The convex hull of a set D < C is the set conv D that is the
intersection of all closed convex sets containing it [24, 45, 47, 51, 54].
Alternatively, the convex hull of a set D can be described as the smallest
closed convex set that contains it. It is the intersection of all half-planes
containing the set D . Ifaset D is convex and closed, then convD=D.

The supporting function of a set D — C s called the function [24, 45,
47,51, 54]:

kp (8) =sup{Re(ze ") :z  D}. (1)
The line xcosé@+ ysin@ =k, (0) is called a supporting line of a set D. For
each 0 €[0;2x] the set D lies in a half-plane {z: xcosé@+ ysin@ <k (6)}.

Example 1. If D ={a=|a|ei"’},then convD =D and

ko (6) =|alcos(y —6).
Example 2. If >0 and D={z:—-0<Rez<o,Imz=0}, then
convD =D and k() = max{xcos6: x e[-c;c]}=o|cosd|.
Example 3. Let 0 >0 and D ={-o;0}. Then
convD={z:-0<Rez<o,Imz=0}
and kp (6) =max{xcos@: x e{—o;0}}=ccos4|.
Example 4. Let o >0 and D ={-0;0;io;—ic}. Then
convD={z:Imz<o-Rez}n{z:Imz<o+Rez}n
™~z:Imz>-c—-Rez}{z:Imz>—-c+Rez}
and
Kp (6) = max{xcos@+ysin@:z=x+iy e{—o;0;io,—ic}}=

o C0sé, 0 <[0; /4],
ocosl, Oel[-nl4;rl4], ;
. osing, Oel[nl4;3714],
osing, Oel[xl4,3x14],

= =< —oc0sl, Oe[3x/4,5x/4],
—ocosd, Oe[3x/4;5x14], i
—osing, Oe[bx/47xl4],

—osing, Oe[5x/4;7x!4],
o C0s4, Oelinl42r].

3.6. The Borel transform. Space PW?. An entire function L is

called a function of exponential type < o if [24, 45, 47, 51, 54]
(Ve>0)3c, >0)(VzeC):|L(2)|<c exp((o+¢£)|]). (1)

For every entire function L of exponential type <o , we have:
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L]Jn

T i =
[ =limniL <o L(z):lanz“. )
Therefore, the order of an entire function of exponential type is less than 1,
provided that in this definition, condition (1) can be replaced by condition (2).

The function

}/L(Z) Z n+1

is called [24, 45, 47, 51, 54] the Borel transform of the function L. If the
function L satisfies condition (1), then the last series converges for |z| >0 and

7, is a holomorphic function in the domain {z : |Z| > o-} . The convex hull G,

of a set of finite singular points of the function y, is called [24, 45, 47, 51, 54]

the conjugate indicator diagram of the function L.
Let
—_In|L(re")
h (@)= lim g

r—+o0
be the indicator function of an entire function L with respect to the formal
order p=1 and G, is conjugate indicator diagram of L.

Theorem 1 ([24, 45, 47, 51, 54]). If L is an entire function of
exponential type, then for all & €[0;27] holds h, (6) <ks (-6) and

L(z) =% j y(t)e%dt, zeC, 3)

where [ is a closed rectifiable Jordan curve such that G, < Int/".
Proof. Indeed,

Zi”ijy(t)e“dt Z IM =3 L2"=L(2),

=0 n=0

which implies (3). Further, let G(s)={z+¢e" 1y €[0;27],zG}. Then
Ko (0) < kg (0) + & . Therefore, by using (3), we obtain
L) === [ e dt
3G ()
which proves h, (¢) <k (—¢) . Theorem 1 is proved. »
Corollary 1. If L isan entire function of exponential type, then
(Ve >0)(3c, >0)(vz=re" e C):|L(z)| < ¢ exp(r(Ks (—¢) + ) .

<exp(rkaq (o) | O]t

0G(¢)

104



Theorem 2 ([24, 45, 47, 51, 54]). Let L be an entire function of
exponential type. Then for each @ <[0;2x] the function y is holomorphic in

the half-plane C ,={z: Re(ze") > h_ (@)} and inside this half-plane, we have:

+ooe!?

n@= [ Le)eds. (4)

0
Proof. Since |L(pe”)|<exp((h, (6) +0(®)p), p—> -+, the integral (4)
uniformly converges on the compact sets in C, . Further,
L(2)=) L+ ), rt)=> Lt
k=0

k=n+1
and

wel? n n wel? " LK
| ( thk]e“dt:ZLk [ temae=> =
0 \k=0 k=0 0 k=0 Z
Furthermore,
aoeig )

j r(t)edt -0, 7 — +o0, Re(ze”’) 20 +3,
reig
and for every >0

reig

j r (e ?dt -0, N—>w, zeC,

0

because
(Ve>0)3cg >0)(Vn=1): |Ln| <q¢((oc+¢)eln)",

(Ve >0)3e, > 0)(Vt € CO)(Vn):|n ()| < ¢ i ((" :‘”ej " <

k=n+1
o+e¢

<, (_) _
SH\o+2¢e

Therefore, if Re(ze") > o +3, then

: i _ i0 _
rn (pele)e zpe S(C:ne(ow-Zg)p pRe(ze )Sgne p’

where ¢, —0 as N —oo0. Hence, the equality (4) holds for Re(ze'’) > o +3.

Finally, it remains to remark that h_(¢) <o and the integral (4) uniformly
converges on the compact sets in C,. Theorem 2 is proved. »
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Theorem 3 (Polya) ([24, 45, 47, 51, 54]). For every entire function L
of exponential type the relation h, (6) =kg (—6) holds for 6 €[0;27].

Proof. The function y is holomorphic in C/G . For every 8 €[0;2r]
the set G lies in a half-plane {z:Re(ze")<ks(-6)}. Therefore, y is

holomorphic in {z:Re(ze'’) > ks (-0)} and is not holomorphic in any other
half-plane that contains it. Hence, from Theorem 2 it follows that
ks (=0) <h_(0) . Moreover, by Theorem 1 we have h, (€) <kg(—¢) and this
proves the theorem. »

The set G| satisfying kGE (8) =h(6) is called [24, 45, 47, 51, 54] the

indicator diagram of an entire function L of exponential type. The conjugate
indicator diagram of every entire function of exponential type is obtained from
its indicator diagram by reflecting it symmetrically with respect to the real axis.

Example 1. If a=|a|e" and L(z)=e", then
o) ak 1

7 (@)= ——5=——,G_={a}, G ={a}, h.(0) =|a|cos(y +6),
k=0 Z Z—a

ks, (0) =|alcos(y —0) and kGE () =|alcos(y +6) =h_(6) .
Example 2. If a>0 and L(z) =ch(az) , then

© k k) k R
7L(Z):Z[ij+1+(22%JZZ( a +( ) ]ZEKL‘FL)

s =\ 2zt 27 ) 2\z-a z+a
G, =[-a;a]=G; and kg _(0)=alcosd|= ks (©)=h(0)
n
Example 3. If 4 eC and L(z) =) e**, then

k=1
n

1
7L(Z)_éﬁ'

Denote by PWG2 the set of all entire functions of exponential type
<o €(0;+w) whose narrowing on R belongs to the space L,(R).

Theorem 4 (Paley-Wiener) ([47, 52, 54]). The class PWU2 is
composed of functions G representable in the form

G(2) :% T e g(t)dt, gel,(~-o;0).

Moreover, ||g||L2(7U;G) =||G||L2(R)'
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Example 4. The function G(z) =z *sin(zz) belongs to PW,f.

Remark that, an aditional properties of the indicator function, Borel
transform and other variants of the Phragmén-Lindel6f principle can be found
in [13, 24, 28, 30-34, 45-47, 49, 51, 52, 54].

3.7. Self-control questions.

1. Formulate the definition of the order of an entire function.

2. Formulate the definition of the type of an entire function.

3. Formulate and prove the theorem on the relationship between the order and
type of an entire function and its Taylor coefficients.

4. Formulate and prove the Phragmén-Lindelof principle for a half-plane.

5. Formulate and prove the Phragmén-Lindel6f principle for an angle.

6. Formulate the definition of a p -trigonometrically convex function.

7. Formulate the definition of the indicator function of an entire function.

8. Formulate and prove the theorem on the fundamental relation for the
indicator function.

9. Formulate the definition of an entire function of exponential type.

10. Formulate the definition of a convex set.

11. Formulate the definition of the supporting function of a set.

12. Formulate the definition of the convex hull of a set.

13. Formulate the definition of the Borel transform of an entire function.

14. Formulate the definition of the indicator diagram of an entire function.

15. Formulate the definition of the conjugate indicator diagram of an entire
function.

16. Formulate and prove Polya’s theorem.

17. Formulate the definition of the space PW? .

18. Formulate the Paley-Wiener theorem.
3.8. Exercises and problems.

1. Find the order and type of an entire function f :

1. f(2)=1+2°. 2. f(z)=€".

3 f(z)=e?. 4. f(z)=1-32°.
© Zn 0 ZZn

5 ()= 6. f(2)=) —.

(2) ;n% (2) le "

7 f(z)—i A 8 f(z)—ii a>0
o (n+1) e ,

2. Find the indicator function of an entire function f :

1. f(z)=e M2, 2. f(z)=e""2,
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3. f(2)=¢*. 4. f(2)=e?.

5. f(z)=e*"+z. 6. f(z)=2ze".

7. f(z)=¢€" +2°. 8. f(z)=e7, neN.
3. Let f and g be entire functions. Prove the following statements:

1) p[f-g]<p[f] p[g]. Using the example of functions f(z)=e‘22 and

g(z)= e , verify that a strict inequality is possible in this case;

2) p[f+g]<p[f]+p[g]. Using the example of functions f(z)=1—e
and g(z)=e?*, verify that a strict inequality is possible in this case;

3) p[flg]<p[f]+p[g] if f/g isan entire function. Using the example
of functions f(z)=e’ and g(z)=e’, verify that a strict inequality is possible
in this case.

4. Let f and g be entire functions of order p e (0;+w) with indicators h;

and hy, respectively. Prove the following statements:
1) hi g (@) <h; (@) +hy(9), p<[0;27];

2) hyq (@) <max{h; (p);hy ()}, p<l0;27].

5. Prove the following statements (see [13, 24, 26, 28, 31-34, 45-47, 51, 52,
54]):

1. If the function f is holomorphic in C, and continuous and bounded in
C., then

1T’ x f (it)dt

@)= (y—t)>+x*"

z=x+iyeC,.
T

2. If the function f is holomorphic in C, , and continuous and bounded in
C. such that sup{|f (2)|:2€0C,}<¢, <+, then sup{|f(2)|:2eC,}<q,.

3. If the function 77:(—o0;+0) —[0;+00) is an even and nondecreasing on

[0;+00) satisfying j t725(t)dt < +oo, then the function
1

C2x+D) T m(t)dt
V)= T J-(y—t)2+x2

—00

is harmonic in a half-plane {z:Rez > -1} and U (z) 2 77(z|), z=x+iy € C..
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4. Let the function 7 satisfies the conditions of the previous statement. Then
there exists a function G holomorphic in C. such that

(V2 e C.):|G(2)| < exp(-11(2)).
5. Let the function f is holomorphic in C, and continuous in C., let

lim x™*In| f (x)| < 0,sup{ f (2)]:2€0C,}<c, and there is B e (0;2) such

X—>+90

that the condition sup{ f (z)|exp(—g|z|ﬂ) :2eC,}<+oo holds for all £>0.
Then sup{f(z):zeC,}<c,, where ¢, >0.

6. Let the function f is holomorphic in C, and continuous in C. , for which
(3c, >0)(VzeC,):|f(2)|<ce?. Then, if sup{|f(z):zeaC,}<c, for

some ¢, >0 and [lim x*In|f(x)|<0, we have |f(z)|<c exp(aRez) for

zeC,.

7. A p-trigonometrically convex function h # —oo on (a; ) has both right
h!(6) and left h’(0) derivatives at every point @ e(«, ). In addition,
h! (6) = h’ (8), while the right derivative h is continuous from the right and
the left derivative h’ is continuous from the left. Moreover, we have

0
W' (6,) - (6)+p" [ h(t)dt >0, @ <6, <6, < B.
Gl

8. A p-trigonometrically convex function h # —oo on («; ) has a derivative
everywhere except possibly at a countable number of points. Moreover, if
6, € (e; B) is a point of maximum, then there exists the derivative h’(6,)
and h'(6,) =0. In the case of a minimum point, demonstrate using the example
of a function h(6) =|sing| that the derivative h’(6,) may not exist, however,
h'(6,) <0<h;(6).

9. If h#—o0 is a p-trigonometrically convex function on [0;27] and 27-
periodic function, and @, is its maximum point, then for every € such that
|6 —6,| <7/ p holds h(6) >h(8,)cosp(6—6,).

6. Find the convex hull convD ofaset DcC:

1. D={z}, z, €C.

2. D={z;2,}, 7,7, €C.
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13.

15.

17.

19.

Dz{zl;zz;..

'ZO}, Zje(C,

oy b

je{l2;...;

No}-

Find the supporting function k,(6) ofaset Dc C:
D={z}, z,€C.

D={2e<C:

|z <R,}, Ry >0.

D={zeC:z=iy|y|<o}, 0>0.
Dz{—iO';iO'}, o eR\{0}.

D=[L3].

Dz{Ze(C:|Rez|<7r,Imz>O}.

Find the Borel transform of the function L:

L(z)=e™

L(z)=ichz.

L(z)=z+3

22,

L(z) = ch(iz) .

3.9.1In

Find the order and type of an entire function f :

dividual tasks.

f(z) =1+32%.
f(Z) 2 32

f(z)=e%
f(z)=¢"
f(z)=¢>*

 f(z)=e®

f()z

f(2)= i
=0

k

@)=Y

‘iz2

_ 36223

i)z2

( 1)n 2n
5 (2n +1)'

f(z)=e’ +e"

(k +1)2klnk '
k

k

k=0

«k+n|m2+m)

Z .
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12.

14.

16.

18.

20.

L(z)=e™

—e’.

L(z)=ishz.

L(z)=2z+

e—Z

L(z)=€" +e* +e™”

f(z)=e”

f(z) = 2%

f(z):eZZ +1+z.

f(z)=chz.

f(2) =sin

Z.

f (Z) — e(l+i)Z )

f(z):i(lnTnj z".

f(z)=shz.

o0

un:%&ks

o0

@)=Y=

k=0

2k

k

(kY

_ e3z

k

2k



= (7e) n
21. (4k)l 22. f(z):nz_;(Fj 2",
23. f(z):cos«/_. 24. f(z)=¢€”cosz.
25. f(z):Ze’“ 2" 26. f(2)= ;(nlnnj
27. f(2)= iz— 28. f(2)= iChf
n1n" n=0 n!
1 ©

29, f(z)=Ien2dt. 30. f(2)= Z[ ]
0

2. Find the indicator function of an entire function f :
1 f(z)=e @07, 2. f(z)=e™?7,
3. f(z)=¢*. 4. f(z)=sinz.
5. f(z)=cosz. 6. f(z) ="
7. f(z2)=€"". 8. f(2)=e®"7,
9. f(z)=e2%. 10. f(z)=¢€"
11. f(z)=e®?" 12. f(z) =07
13. f(z2)=shz. 14. f(z2)=chz.
15. f(z)=€’ , neN. 16. f(z)=¢€’ +2°.
17. f(2)=e%, a=qe”. 18. f(z2)=e@ ™" 5>0.
19. f(z)=e?". 20. f(z)=e%*".
21. f(z):s'n*/E 22. f(2)=——.
Jz r(z)
23. f(z)=e?+z. 24. f(z)=e®¥ 550,
25. f(z)=2ze". 26. f(2)=€"% +22.
27. f(z)=¢€"cosz. 28. f(z)=e"*sinz.
29. f(z)=e’+1+7z. 30. f(2)=e€® +1+22.
3. Find the Borel transform of the function L:
1. L(z)=e™". 2. L(z) = —€”.
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3. L(2)=chz.

5. L(z)=e™"

7. L(z) =cos/z .

smz

9. L(@)=—

11.

13.
15.

17.
19.
21.
23.
25.
27.
29.

L(z)=z-27%.

L(z) =sin/z .

L(z) =coszcos(iz).
L(z2) =cos(iz) .
L(z)=chz+sinz.
L(z)=e’ +sinz.
L(z) =1+2z+32%.
L(z)=z*+chz.
L(z) =e " +iz +e*"
L(z)=e* +chz.

—el+e % +e”,
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4. L(z)=shz.
6. L(z)=e"+z.
8. L(z)=e"—iz.

10.

12.

14.
16.

18.
20.
22.
24.
26.
28.
30.

sinz
L(z) = \/-
L(z)=z+e™
L(z)=Ae*, Aja=0.
L(z) =sin(iz) .
L(z)=1+¢".
L(z)=e"".
L(z)=e* +cosz.
L(z)=z+shz.
L(z) =sinzsin(iz) .
L(z) =€’ +shz.
L(2) _ g2

+e” 4z,



Chapter 4. Infinite products of entire functions of finite order
and related problems

4.1. The convergence exponent of the sequence. Let (4, ), be a
sequence of complex numbers such that 0<|4 |40 as k—oo. The
greatest lower bound z of z,’s such that the series [24, 31, 45, 47, 54]

DA )
k=1

converge is called the convergence exponent of the sequence (4, ). If 7 <40,
then for every z; > 7 the series (1) converges, while for 7, =7 the series (1)
may be convergent or it may be divergent.
Theorem 1 ([24, 31, 45, 47, 54]). For every sequence (4,), the
convergence exponent z can be found by the formula:
=— Ink

)

Proof. Let the right-hand side of (2) be denoted by z*. We need to
show that 7=7". Let r<+oo. Then, for every 7;>7, the series (1)

converges. Therefore,
n —% n
<
[l k%ﬂﬂkl“

This yields that for every 7, > 7

-0, n>w.

Inn
lim——
n—w |n|l |
Hence, 7 <z". Now let z° <+oo. Taking an arbitrary numbers z, and 7, such
that 7° <7, <7 <+, we have 1/|4|<@/k)? for k>k*. From this, it
follows that the series (1) converges for every z; >z". Therefore, 7° <7.
Thus, z° =7. Theorem 1 is proved.»
Example 1. If 4 =k, then r=1 and for 7, =7 the series (1)
diverges.
Example 2. If 4, =(k+1)In*(k+1), then =1 and for 7, =7 the
series (1) converges.
Example 3. Let p e (0;+) and 4, =k¥”.Then z=p.
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Let n(t) be the counting function of a sequence (4,), i.e

n(t)= > 1=max{k:|4|<t},and
| |<t

N(r)=jwdt+n(0)lnr, r>0.
0

Theorem 2 ([24, 31, 45, 47, 54]). For every sequence (4,) holds

— Ink

i _iim Inn(r)'

k—s0 |n|,11(| ro+o Inr

Proof. Indeed,

ink__Inn(|4)
In 4|~ Inj4]
From the other hand, for every r > |4 | there exists k such that |4 |<r <[4 |
and
In n(r) In k Ink
Inr Inr In|/1 |

Theorem 2 is proved. »

Theorem 3. For every sequence (4,) holds

T In n(r)

In N(r)

r—+o0

Inr

I‘—)+oo

Inr

Proof. The required statement follows from the inequalities:

N(r) = jﬁdt<n(r)|n

|4l

.[den

rle
Theorem 3 is proved. »

4]

(ej’ r>eld.

Theorem 4 ([24, 31, 45, 47, 54]). The series (1) and the integral

+00

J
1
converge and diverge simultaneously.
Proof. Since
0 4
J‘ t11+1
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from the convergence of the integral (3) it follows that n(r)=o(r") as
r — +oo. Therefore, the required conclusion follows from the equality:

1 I dn(t) _n(r) n(|4]) +r1j n(t)dt

\/h\éfukrl Gl t7 ra |A:l|rl 2] ta+l
Theorem 4 is proved. »
4.2. The Weierstrass canonical product. Relation between the
genus and the convergence exponent of the sequence of zeros. Let the
sequence (4,) has a finite convergence exponent and let p be the smallest

integer such that

o0
ZM( |_p_1 < +00,
=)

and
E(z/ 1--2 yh
(F/4:P) [ zJexp(; w]‘
Then the product
o o p i
L(2)=] [E(2/ A; p):H(l—i]exp(z_z—jJ
k=1 k=1 A =
is called the Weierstrass canonical product of genus p. It is uniformly
convergent on each compact set in C, the function L is an entire and the
sequence (A4,) is a sequence of its zeros. In this case, the number p is called
the genus of the sequence (4, ) or the genus of a canonical product.
Theorem 1 ([24, 31, 45, 47, 54]). For every sequence (4,) holds
p<r<p+1.If ¢ isanoninteger, then p=[r].
Proof. This theorem follows directly from the definitions. »

Example 1. If 4 =n, then p=7=1 and L(z):H(l—Eje" is the
n=1 n

corresponding Weierstrass canonical product.
Example 2. If A =(n+1)In*(n+1), then 7=1, p=0 and

- Z
L(z)= 1-—————— | is the corresponding Weierstrass canonical
@) H[ (n +1)In2(n+1)] P J

n=1
product.
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Example 3. If A =n?", then 7=7/2, p=3 and

» / 7 72 78 ] ]
L(Z)=H(l—z/n2 7)exp WJFWJFW is the corresponding
n=1

Weierstrass canonical product.
4.3. Relation between the order of a canonical product and the
convergence exponent of its zeros. Lower estimates for canonical products.
Theorem 1 ([24, 31, 45, 47]). The order of the canonical product is
equal to the convergence exponent of the sequence (4,): p =7.

Proof. It follows from the Jensen’s inequality N(r) <InM (r) that
7< p,. To prove the opposite inequality, we choose the number 7, such that

<7, <p+l and »'|A|™ <+o. Then, taking into account that
k=1

p <z, < p+1, we obtain
[E(2/ 4 p)| <exp(2l2/ A" ) <exp(2[2/ A" ) 2/ 4] <y2.
B2/ 4 p)| <exp(infL+ 2/A )+ (2[2]/]4)° ) <
< (2f2/|4)" <alz/Al* 74 =y,

Hence, p, <t and the theorem is proved. »
Corollary 1. In order that the sequence (4,) be a sequence of zeros of
some entire function f of order p; < p, itis necessary and sufficient that
— InN(r
fim M)
ro+o |nr

Example 1. If 4, = Jn, then 7=2 and the order of the Weierstrass

z

2
~ 1( z
canonical product L(z) = 1—2/\5 ex +—=| — isequal to 2.
produet L) =[ ][ )"Lﬁ z(ﬁ” q

Theorem 2 ([24, 31, 45, 47]). For the Weierstrass canonical product
L of order p #+oo holds

(Ve>0)(3n)(VzeU, |72 1):|L(z) 2 exp(_|z|p+s)’
for every p, > p, where U :U{z:|z—ln|£|ln|_pl}.
n
Proof. Indeed, we have
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(-

n

In|L(z)|2 Z In
2n|<2l2|

In

p
D7 ks
af2]| i
Ao+ > mja, [
nl22l2]

>c, 2| —n(2|z|)|n(2|z|)1+pl +0(1),
which proves the theorem. »
Corollary 2. For the Weierstrass canonical product L of order

p # oo there exists a sequence (1, ), 0<r T +o0, such that
(Vé‘ > 0)(E|k*)(Vk > k*)(V¢ c [O; 271-]) : ‘ L(rkei(/? )‘ > exp(_rkp+s) .

Proof. To prove this corollary, it is necessary to take into account that

S AL <400, >
k=1

4.4, Expansion of entire functions of finite order into infinite
products. Genus of an entire function. One of the main theorems of the
theory of entire functions is

Theorem 1 (Hadamard-Borel) ([24, 31, 45, 47, 54]). Every entire
function f =0 of finite order p may be represented in the form

f(z)= eQ(Z)H(l—ZJexp[i Zﬂkjj J 1)

—1

L)
70

~—
\Y

= > |InE(#/ A p)|2 &2
Bt

where (4,) is a sequence of zeros of the function f, meZ, is the

multiplicity of the zero at the origin, Q(z) :ZQiZi is a polynomial of degree
i=0
v< p, p<p isthe smallest integer for which

S UA " <o, )
k=1

Conversely, if Q a polynomial of degree v<p, meZ_, (ﬂk) is a sequence
with convergence exponent 7 < p and p < p is the smallest integer such that
holds (2), then the function (1) is entire and has the order p=max{v;z}.

Proof. It follows from the Jensen’s inequality that the convergence
exponent 7 of the sequence of zeros of f does not exceed p. By the

Weierstrass theorem, the function f has the form (1). We prove that Q is a
polynomial of degree v < p. Let us denote the last factor in (1) by L(z) . Then
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by Corollary 2 from the section 4.3 there exists a sequence (rk ) O<r T 400,
such that

(@)
2"L(2)

(Ve >0)(3k")(k = k* ) :max|e?®| =

|zl=n¢

<oo(s)

|7=rk

and maxRe Q(z) £rf*. Thus, applying the Schwarz formula for R =r, , we
Z|=Iy

obtain |Q ‘ )(O)‘S(:lrk’”’”. It follows that Q™ (0)=0 for n> p, thatis Q is

a polynomial of degree v < p. The second part of Theorem 1 is also valid
because the inequality po<max{v;z} is obvious, and the inequality
p=>max{v; 7} was established above. Theorem 1 is proved. »

Corollary 1. The order p of an entire function f having the
representation (1) is determined as follows: o =max{v;z}.

Corollary 2. The order of an entire function of noninteger order is
equal to the convergence exponent of the sequence of its zeros.
Theorem 2 ([24, 31, 45, 47, 54]). The following equalities are valid:

sinz=z [ (1——jekﬂ —zH(l—mj ©)

keZ\{0} K1
+0 Z _z ®© Z2
COSZ = 1-— e/r/2+7tk — 1 (4
kl_—_[)( (7z/2+7rk)j H[ (71./2+7z_k)2j (4)
Moreover, the last products converge uniformly on every compact set in C .

Proof. Indeed, the function 77Y2sin/z is an entire function of order

p=1/2 with zeros at the points k%22, k € N. Therefore, by the Hadamard-
Borel theorem, we have

L)

Taking z=0 we conclude that ¢, =0. This yields (3). The function cos<z
is an entire function of order p=1/2, which vanishes at the points

(zk +712)?, k e Z, . According to the Hadamard-Borel theorem, we obtain

® z
COSA/Z =C, 11—
OH[ (7z'/2+7rk)2j

Putting z =0 here, we get ¢, =0. Thus, the equality (4) is true. »
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The genus of an entire function f of order p e[0;+x) is called [24,
31, 45, 47, 54] the number g=max{p;v}, where p is the genus of the

sequence (4,) and v is the degree of the polynomial Q in the representation

Q).
Theorem 3 (Poincaré) ([24, 31, 45, 47, 54]). For every entire function
f of order pe[0;+00) holds q< p<q+1. If p is a noninteger number,

then g =p=[p].
Proof. Since p<z7<p+1 and p=max{v;z}, the statement of
Theorem 3 is valid. »

Example 1. If f(z)= z4e22”3H(1— z/n)e’™  then q=3.

n=1

2
= 1( z
Example 2. If f(z)=2z%?% l—i]ex i+—(—j . then
p (2) |n_l|( ol i Byt By

4.5. The Fourier coefficients of an entire function. The functions

q=2.

2r
C.(R)= % [ In]f (R ™do, kez, R>0,
0

are called the Fourier coefficients of an entire function f .
Theorem 1 ([13, 23, 31, 45]). If f =0 is an entire function, then

Co(R)=N(R)+n|f,], 1)

k — \k
Ck(R):Ck(R):%akRkJrz_lk{ > [%} _(%j J k>1, (2
0</75|<R

where (4,) is a sequence of zeros of the function f , m is the multiplicity of
the zero at the origin and the numbers ¢, are determined from the expansion
f(2) <,
In =>» a7,
f.z" kzﬂ: “
and Inw is a branch of the logarithm in C, that takes the value zero at the

point 1.
Proof. The equality (1) follows from Jensen’s equality. Let us prove
(2). Let

D=C\|J{z:argz =g, .|2|2|4]}
k
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where ¢, =arg 4, €[0;27]. The function f(z)/(f,z™) has no zeros in D.
Therefore, using the Poisson-Jensen formula, we conclude that the
holomorphic in the disk {z:]z| <R} function

F(z)——fln‘f(Re'g)‘Re +§ o+ > InI:\l;(zz—_/i/%h‘)—In|fm|Rm

0<|2n|<R -
coincides with one of the branches of the function In(f (z)/ f,,z™) . Moreover,
2Re"
(Reie _ Z)k+l
Zk (_1)k

k -1)! n____ , k>1, R,
i )0<;<R((R2—zﬂn>k (z—ﬁn)k] i<

® oz . . k — \k
F7 ) (O)zijln\f(Re'e)}e-'k@dm1 3 Ryl (&) | ks,
2k! 27 k0<\/1n\sR z r

It follows that the formula (2) holds for k=>1. The equality
C.(R)=C«(R), k<1, is obtained directly from the definition C, (R).
Theorem 1 is proved. »

Example 1. If f(z)=e’, then C;(R)=C_(R)=R/2 and
Ci(R)=0 for ke Z\{-1,1}.

k' 2z )
F®(z) = j In| f (Re")
0

Example 2. If D 1/|4, <+ and f(2)=]](1-2/4,), then we
=1 n=1

have:

ni@-S(1-L)- S E]FES L

k
=1 k=1 k=1 n=1 ﬂ'n

2, =0, C,(R)=N(R),

1& 1
o =——) —, k=1,
Dy

k — \k
1 RY 1 7
C.(R)=—— L—J _ [—] k1,
2k iR\ Ay 2k0<;gR R
k k
RY 1 A
Cu(R) =~ [TJ a2 (2] ks
2k AR\ Ay 2k0<%:<R R
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Example 3. If i“1/|ﬂn|2 <+ and

n=1

w z
f(2)=e2[]|1-Z g™,
@-T1+ 7}
then

Inf(2)=Qz +§[|n£1-i]+i}

k=2 k :l
ka C (R = N(
1 R 4,
C,(R)y== QR+— (— —j
' 2 . O<‘Z.n‘<R A R
15 Ay
C_,(R)= QR+— - —j
' 2 . O<\/1n\<R ﬂ’ R
1 o0
_Eéin
1 k k
G, (R) == ( j [ ],kzz,
‘ 2k mr\A ) 2K oG
k
C, (R)_—i [EJ ”J , k<-2.
2k Ay o<uﬂ\<rz
Example 4. Let Q(z) i

k be an entire function and let (p,) be

a sequence of nonnegative integers such that the series Z:(r/Mn
A, # 0, converges for every r e[0;-+0) . Then

Pn k
f(2)=eROT T 1=-% |ex z
(z)= H s kZl:k i
is an entire function and we have

)pn +1

n=1
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o ges HEH R

k=1 n=1
= K = &1
30 3 I 4-0, GRI=NR),
k=1 k=pp+1 n:lﬂ"n
ak:Qk’kEJ-;_pn,
k — \k
oot Rl _[A T
cm-jor g 3 [(2](3]] v
k k
1Rt Rl (A |
co-ar g 3 (23] xemn
11
ak:Qk_EZ_;?'k>pn’
k — \k
1., 1 R 1 2
R)==Q.R"-—— - -= Dl k
k k
1~ 1 R 1 A
C.(R)==Q,R" - — [7] - [—“] k<—p,.
“ 2 2kaR A, 2k0<§‘§R R

4.6. Relation between the type of an entire function and its zeros.
According to the Hadamard-Borel theorem, an entire function f of order

p € (0;+00) may be represented in the form
f(z)=z"‘eQ<Z’HE(i; pj (1)
k1

where Q(z) :ZV:Qizi is a polynomial of degree v< p, p< p isthe genus of
i=0
the sequence (4,) of its zeros and meZ, is the multiplicity of the zero of f
at the origin and E(w; p) is the Weierstrass primary factor. Let us determine
when a function of order p € (0;+o0) has a finite type.
Theorem 1 ([24, 31, 45, 47]). In order that an entire function f of
noninteger order p € (0;+o0) has finite type, it is necessary and sufficient that

the sequence (A, ) has finite upper density:
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7, =lim—— < 4o )

Proof. The necessity follows from Jensen’s inequality. To prove the
sufficiency, let us denote the canonical product from (1) by L(z). Then

In|L(2)| < z N1+l /02 ])+ > 2" 1A+ ) 2°|2/ 4" <
127 | |<2l2] | [>2]2]

p+1
z

A

2| [ |ﬂk|J |2|°
S T SN E S P P
wmn Al wEa \2 2d) pEs Al WS

12| j%mﬂzr’” J S =Ne@n+n(2fz)in +

1
tP*
X 2]

+00
2|z |p J‘ dftT(t) 2p|z|p+l J.%:O(I’p), [ —> 400,
2 2l7]
It remains to remark that the first two factors in (1) have order less than p. The
theorem is proved. »
Corollary 1. The type of an entire function of noninteger order is
equal to the type of the canonical product.
Theorem 2 (Lindelof) ([24, 31, 45, 47]). In order that an entire
function f of integer order pe(0;+w) is a function of finite type, it is

necessary and sufficient that the condition (2) holds and

Q-+t 3 L

—5| <+ (3)
P odaer A

5= lim

r—-+owo

In this case, for p = p the type of the function f is equal to zero if and only if
0=1,=0.If p=p-1, then the type of the function f is equal to the

coefficient Q,, of z” of the polynomial Q in the representation (1).

Proof. First, we will prove the necessity. The necessity of condition (2)
follows from Jensen’s inequality. To prove the necessity of condition (3), we
will find the Fourier coefficients of the function f , assuming for simplicity

that f(0)=1. Then

~ p ‘ © _i P 5 )2 ©
Inf(z)_kZﬂ:ka +nz_l:|n[1 - J+“Mk => Q. ZZ P

n k=1 n=1 k=p+1
Threfore
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Qs kel;_p,
o, = 0
“ —Zi k>p+1.

=L

Heence, «,=Q, . Since condition (3) holds for p=p -1, it is sufficient to

consider the case p=p. Then

P Z P
C — Py = | .
LN = Q r 2/?;,”«{(1 J ( : ] J

- i i —Ip Zn :
o(r)y=r" [2 jln‘f(reﬁ)‘ 9d9+2p;r(7)],

Thus,

where

It follows from the Jensen inequality that
2z

1 1
N(r) +— In* ‘ . (re'g)‘

i0

2z
do—— j In*
2
0
Further, taking into account that [In| f||=In"| f|+ In*ﬁ , we obtain

2
1 j In| f (re”)|e *?dg| <2InM (1)
2 0

Furthermore,

|/l | P p p-1
Z( ; j tPdn(t) = n(r) - jt n(t)dt .

[Anl<r

(4)

()

This, together with (4) and (5), completes the proof of the necessary part of the
theorem. Let us prove sufficiency. First, suppose that o= p and r =|z| . Then
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o (B 1
”1;[" pﬂn;r;t z}:IZr A Z;!:!r Ay
n(2r) n(t)
dt,
o<\zn\<zrin (2r)” pj t7

st 2kl

<2r >2r
n n

<2 Z +N(2r)+n(2r)|n + > @™

p+l
e |4, 2 iR Al
This implies a suf‘ﬁuent part of the theorem for p=p. Let p=p—1. Then

o= [Te(o-1)-

n|>0

con 5 Ty |TLE(£ra| TTE(£ o)

In this case, by using the relation n(t) =o(t”) as t —+o and the inequality

n(2r) n(t)
2r)” pj p+1
Vnl>2r ﬂ'n ( r t

we arrive to the completion of the proof of the theorem. >

Example 1. The function f(z)=]]@-z/k)e”™ is an entire

k=1
function for which 4, =k, p=7=1 and z 1/ 4, — 40 as R—+oo.
0<|4 <R
Therefore o =+o0.
Ipuknao 2. Let
A= -n, k=2n-1,
1 n, k=2n

Then
f(z)= H (1—z/n)e?" = H(l 212, )t

n=—o0, N0
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is an entire function such that p=7=1, p=1, 7;=2 and » 1/} =0.
0<|A¢|<R

sinrxzz

Hence, f is an entire function of finite type o . Since f(z)= , we have

Tz
O=T.
Example 3. The function

ool 17

is an entire function for which ﬂ.kZ\/E, p=1t=2, 71,=1 and

1/ A — +oas R—+oo. Thus, o =+w.
0<% <R

Example 4. If 4,, =/n and Ay = ivn, then

o[-l 33

is an entire function such that p=7=2, p=2, 7,=2 and
Z 1/ A2 =0.Hence, o € (0;+x0).

0<|2,<R

Example 5. Let A, _, =k, A, , =~/ke'?" and 4, =+/ke'*"".

e D)

is an entire function for which p=7r=2, p=3, 7,=3 and

Y. 1122 =0, because 1+ +€7%'* = 0. Therefore, o (0;+0).
0<Z,|<R

Then

Example 6. The function
f(2) =H(1—z/(k In2(2+k)))
k=1

is an entire function such that A, = kln2(2+k), p=1t=1 p=p-1=0,
7,=0and Q, =0. Thus, o=0.
Example 7. The function
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o0

f(2)=e" [](1-2/ (kIn*2+k)))

k=1
is an entire function for which A =kIn*(2+k), 7=1, v=2,
p=max{l;2}=2, p=p-1=0, 7, =0 and Q, =3. Hence, o =3.

4.7. Asymptotic properties of entire functions of finite order.
Theorem 1 ([13, 30, 31, 45-47]). Let A €[0;+0), let p e(0;+w0) be

a noninteger number, p=[p] and let (1,) be a sequence of positive numbers
such that

n(t) = At” +o(t”), t > +oo. 1)
Then
L(z):le[i—i;pJ, z=re", (2)

is an entire function and for every ¢ € (0;27) holds

P
7_[Ar cosp(p—rm)+o(r’), r - +oo.
sin zp

Moreaver, for each & € (0; ), the relation (2) holds uniformly with respect to

In‘L(re“”)‘ =

B

pe [5; 27r—5], and if the sign “="is replaced with “< ", the corresponding
analogue of (2) will hold uniformly with respectto ¢ [0;2;:].
Proof. Indeed, we have

+0 7 - af dt _
|n||_(z)|=Re_(|)‘In E[?pjdn(t)_ Re[zp .([n(t)—tp“(t—z)J_

:_Re(szrlvTL)J_'_o(rp) =Re[ A eip(go—/r)rpj+o(rp):

P (t -2 sinzp

A
= _7[ r’cos p(¢—m)+o(r’), r —+wo,
sinzp
because
+0 tafl efilra
dt=-7—
5 t—z Sin o

Theorem 2 ([13, 30, 31, 45-47]). Let peN and (4,) be a sequence

of complex numbers such that n(t) =O(t”) as t — +oco. Then for the product
(2) holds

Zafl

, 2¢[0;40), O<a<l1. »
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/0 [An|<r 3)

o(r”), p=p-1
as r —-+oo forevery o e (0;27).

Proof. Indeed, the latter statement was established in the course of
proving Lindeldf's theorem, and the rest follows from the estimates obtained
there, taking into account that in the case p=p,as r —+oo:

In|L(z)|=Re[ > A P]+ D I

|ﬂn|<2r [An|<2r
+3 I + 3 I E(%;pj +Re[£ 3 zhf’}m(rp).
[An]>2r n

IAnl<2r P i<er
In the case p=p—1 holds n(t) =0(t”) as t — +oo, and we have

In|L(z)|=Re£—£ > /In"}r > In
P \l<2r nl<2r
+ZIn§ZK+ZIn [Z;pJ
i KA, A

|An|<2r Inl>2r
Theorem 3 ([13, 30, 31, 45-47]). Let (A,) be a sequence of positive

numbers satisfying (1) for some A e[0;+0) and p € (0;+x). Then for the
function (2) holds

p-1

N2

k=1

=0(r’), r >+w. »

In|L(2)|=A(z) +0(r"), r —+o, 4)
for every ¢ €(0;27) and p e N, where

A(2) = [ Z v }__rp oS p@ + (7 — @)Ar” sin peg, p=p,

P lsr
0, p=p-1
In this case, for every o6 (0;7) the relation (4) holds uniformly in
pels;27-5].
Proof. Let
L (2)= HE( j HE[ ]
In<r An >t

Then
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In|L, (z)|= Rejln E(%;p—l)dn(t) +ReTIn E(%;pjdn(t) -
0

r +OC

J»(rcos(p 1)p-tcospp)n +.[ (rcos pp—teos(p+Dp)n(tydt |
t7(t? - 2trcosp+r?) t74(t? - 2tr cosp+1?)

=—wcos,o¢+r”
o

0 r

p 1 (cos(p—1)p—ucos pe)du cos pp —ucos(p +1)e)du
=T o ppt or” J( (p2 Jp-ucospp)du J( P (p+Dp)du |
P 0 u“—2ucosg+1 u(t® —2ucose+1)

z—érpCOSp(p—i—(ﬂ—(p)Al’pSinp(p-i-O(rp), r—+o0.
o)

For p=p, we have

In|L(z)|= Re[ﬁ > ﬁ,;pj+ln|Lr(z)|,
P Vgl
and from the previous equalities, we obtain (4). In the case p=,+1, the
required statement is established in Theorem 2. »
Remark 1. If 4, >0 and relation (1) holds, then

> = L Jdn(t) =AplInr+o(nr), r— +wo.
Ay t?
0<Ap<r 0
For entire functions of order less than one, the mentioned relations are
established quite easily. Let us present one simple fact.
Theorem 4 ([1]). Let a sequence (4,) of complex numbers satisfy the
condition
n(t n(t
G <D >DERTL )6 21 2 < % , )
let L(z)=] J@-2/4) and R= (;zp/sin(;zp))”P . Then
k=1

INnM,(r) <N(@+o@®)Rr), r - +o.
Proof. Let y >R. Then

InM (r)<ZIn(1+mj N(yr) - J'”(t)‘:t Itr?t(i)crj;

Using (5), we obtain
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o0 +00 -1
mn n(yr) ¢ rt”
IﬂdtSaﬂ ! dt+c,, r=r,,
t+r (;/r)p t+r
yr

T n) 451 )’

5 dt+cz,r>r
o L+r Z(yr) t+r

Therefore, taking into account that

J‘tp_l o7
o1+t sin(zp)

we get
n(r)| Fto e pteo 1(1+t) SO Tt ~
INM_(N<N(yr)+a o U; Tit j " —?.([ +C, =
an(yr) t7dt
=N(yr)+c, + ——| R” -y 1-— 6
r)+ces pr° L ( )I1+t ©

For a given y >R, the number « >1 can be chosen sufficiently close to 1 so

that the expression in parentheses in formula (6) becomes negative. Thus, we
arrive at the required conclusion. »
Example 1. Condition (5) is equivalent to the condition

@p<)(Va >1)@En) (VK = n)(Yn=>K) 1| A ] 4, < (ak / )7 (7)
Indeed, if (7) holdsand t, >t, > ‘ﬂko‘ , then for some k and m>k, we

have |Ay| <t, <[An.| and |4 | <ty <|A,q| . Therefore,
n(tZ)s m__, K+l s(1+ijam.
8 Wl UK
From this, the condition (5) is true. Conversely, let (5) holds and the numbers
m and k are such that m>Kk and |4,|>|4|>at,. Then, for some t, and

t, such that t, >t, > aty, we obtaon |4, | <t, <|[A,.|. |4/ <t <|4| and

l” (adly o E
This implies (7).

Example 2. Condition (7) holds if there exists a limit
limn/|4,|” =Ae(0;4%) orif (A<L)(Vn): |4,/ 2| <A.
n—oo

In fact, since

m <a” n(tz) <a”n(tz)<ap+1—n(tl)<a2(l+p)k/|}~k|p'
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(Ve >0)@n,)(Wn=ny) : [/ 4| <(LU(z - £)n)"”,
(Ve > 0)(F) (VK 2 ko) : 4] < ((+2)K)"”,
|/11< /ﬂ'h|:|ﬂk //11<+1|'|/11<+1/ﬂ1<+2|'---‘|ﬂ11—1//111|S
<(kKIk+D)" - (k+D /K +2))"" .- (n=1) /)" = (k/n)**
for n>k>n;.
Corollary 1 ([1]). If
(Vp>0) (Ve >1)(3k ) (VK > k) (VN = K) 3| A /A, [< (akIM)Y?,  (8)
then
InM_(r)=N(@+o@)r), r —>+oo. 9)

Proof. Indeed, the sufficiency follows from Jensen’s inequality and
Theorem 4, because R —1 when p—0. Now, let us prove the necessity.

Suppose that arg 4, = const, condition (9) holds, but (8) does not hold. Then,
(Fp>0)EFa >D(VN)(FK, 2M)@Em, >Kk,): [ A4 14, [>(ak,/m, e
Since | 4 /4, |<1,wehave m, >ak,. Let
Py =min{s >k, ;| & /A > (ak, /5)""},
where s, =[up, ], [X] is the integer part of a number x>0 and 1/ <7 <1.

Then p ,>cak,, s, >k,, and from the definition of p, it follows that

| A 1 2, 1> (ke 1 P )7 | A 1A 1< (e, 18,)"7.
Therefore, the inequality |4 /4, [>(s,/ pn)”” >, holds for O<n, <n”.
Let i, =max{k:| 4 [<2| 4} and j, =max{i,;p,}. In this case, we have
| 4, 1 4, |27, where 7, =min{1/2;7} . Hence,

i, (2, ]) (12, )« om(a+ 4, )+ el a):
>N (A )”zn in(t+ ]2, /)2
> N (|25, [)+ (i = 50)In(1+ W) 2N (|4, |)+ Jomss > 0.

But j, i, =n(2| 4, [). Thus, taking 77,, 1<n, <2, sufficiently close to 1
so that 77, > In7,, we obtain
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i, (2, [)2 nln|2, |J+ M2, |)2 M2, )
This contradiction proves the theorem. »

Example 3. Condition (8) holds if |imn/|ﬂh|p:Ae(0;+oo), and
n—oo

also if | 4, [=@(n)(1+0(1)) as n—oo, where ¢ is an increasing, positive,
and continuously differentiable  function on [0;+w), for which

X' (X)/@(X) = +o0 as X — +o0, because

|4 1 4] = @+0@)exp(In (4 ) —Ingp(4,)) =
=(1+0o(D) em(—it%dt} <(1+o()(k/n)"”

for every p>0 if K —>+o0 and n>Kk .
Theorem 5 ([1]). Let (4,) be a sequence of distinct nonzero complex
numbers such that

(Ep e (O:D)En, e N)(VN= 1)1 |4, /4| <((N=1) 1 n)*” . (10)

Then for an entire function L(z) = H(l— z/ 4,),one has

n=1

>N (|4,])—an+0(), n—+o,

In|2,L" (4
where
q= 1-pctg(zp)

Yo
Proof. Since [1]

(Zln( (k/ny’ )+Zln( n/k’/”)J

k=n+1

z.:[In(l—pr)dx+Iln(1—x%jdx——q :

we have

In| 2L (4) 2 N (4, Zln(l A/ )+ 3 (1|l A4 ) 2
k=n+1
> N(|ﬂﬁ|)—qn—c1, ¢, >0,
which proves the inequality (10). »
For other asymptotic properties of entire functions of finite order, see
in [13, 23, 24, 28, 30-34, 45-47, 49, 51, 54].
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4.8. Entire functions of regular growth. The detailed relationship
between the asymptotic properties of an entire function and the properties of
the sequence of its zeros is established in the theory of entire functions of
completely regular growth (see [1, 13, 30, 31, 45-47, 49, 50]). The theory of
entire functions of completely regular growth is presented in detail in [13, 30,
31, 45-47, 50].

An entire function f of order pe(0;+w) with the indicator h; is
said to be of completely regular growth in the sense of Levin-Pfliiger, if there
eaxists a set E —[0;+w0) of zero relative measure, i.e., an E;-set, such that
uniformly with respect to ¢ €[0;27] (see [13, 30, 31, 45-47])

In|f (re'”)|=rh; (@) +0(r) , Ey 31 —>+o0.
In this case, a set E —[0;+o0) is called a set of zero relative measure if

lim M:O,
r

r—-+w
where £ is the Lebesgue linear measure on R . We shall say [13, 30, 31, 45-
47] that a sequence of complex numbers (4,,) has an angular density of index
p if, for almost all & € R and almostall SR, a < £, there exists a finite
limit
lim 2L 2) ”(t %f) _

t—+o0

M@ f) nGaf)= Y L )

|A|<t, a<arg 2,<8
The angular den5|ty of index p of a sequence (4,) is called [13, 30, 31, 45-

47] a non-decreasing and left-continuous function A:R —R, which is
determined, to within an additive constant, by the equality

A(B)-Ala)=A,(a; B), a<pB. If p is a noninteger, then a sequence
(4,) having an angular density of index p is called regularly distributed [13,
30, 31, 45-47]. If p is an integer, then a sequence (A4,) is called regularly
distributed if it has an angular density of index o and there exists a finite limit
[13, 30, 31, 45-47]:

. 1
o= lim —_—
R—)mﬂﬂZR /1np

We shall say thata set U (a,; 0,) =C, U(a,; p,) ={z:]z—a,|< p,} , of disks
has zero linear density if (see [13, 30 31, 45-47])

lim = Z p,=0.

r—+o [ P
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An C,-set is called [13, 30, 31, 45-47] a set C < C that is contained within

some collection of disks U (a,; p,) = C of zero linear density.
Theorem 1 (see [13, 30, 31, 45-47]). Let f be an entire function of

order p e (0;+w) with the indicator h,. Then the following conditions are

equivalent:
1) there exists an exceptional C;-set C < C such that

In|f (2)|=[2" h, (arg 2)+0(|z|" ) C 32— +oo.
2) there exists an exceptional E,-set E —[0;+o0) such that
In|f (re®)|=r"h; (p) +0(r") , E3 T —+o0,
holds uniformly in ¢ €[0;27];

3) there exists a sequence (r) such that O<r T +o0, 1 /1, —1 as
k — oo, and uniformly in ¢ €[0;27]

In|f (5.e”)| = 170, (@) +0(1), k >,
4) the sequence (4, ) of zeros of the function f is regularly distributed;
5) uniformly in ¢ €[0; 2] one of the following conditions hold:

o \f(e"ﬂ)\ 1 gt fln|f(ue'¢’)|
fim [ ) Jim e TR =G
6) for any pe[:L+oo) holds
Vp
27r| f lp
lim Z!M h(p) d¢ =0, I —>+0;

7) for each k € Z there exists a finite limit:
|Im Ck (r)

r—>+o [

27
—d,, C.(n) :=2ij|n\f(rei¢)\e‘k¢d(p, keZ.
g 0

In addition, if condition 2) is satisfied, then there exists a limit (1) for all
a <R and g eR, except, perhaps, a some countable set of values of & and

p for which hi (a+) = hi (=) and h; (S+) = h; (S-) . Inthis case,
Ay ) _M
27p

where
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B
$o(a ) =i (B) =i () + p* [ 1, (@)dg.

and the function s(¢)=2m0A(p) is the associated measure of the function
h; . If condition 7) is true, then

1 2z .
de =5 [ i (p)e*do.
4 0

If the sequence (A4,) is situated on a finite system of rays
{z:arg:z//j}, je{l...m}, 0<y, <y, <..<y, <27, then condition
(1) is equivalent to the condition [13, 30, 31, 45-47]

nty ; f ,
IimM:A., Aj€[0;+0), je{l..,m},

t—-+0 t? )

where n(t,z//j;f):z‘ | > o1
ﬁ'ngtlargin:'//]

More precise asymptotic estimates can be obtained for entire functions
of improved regular growth, which have been studied in [6-9, 17-21, 25, 35-44,
56, 57]. We present here some fundamental facts of the theory of entire
functions of improved regular growth.

An entire function f is said to be of improved regular growth [7, 35]
if, for some p e (0;+), p, €(0;p) and a 27 -periodic p -trigonometrically
convex function h = —oo, there exists a set U < C contained in a union of
disks with finite sum of radii such that

In|f (2)| =r*h(p) +o(r*), U 3 2=re"” - .
If an entire function f is a function of improved regular growth, then it has [7,
35] the order p and the indicator h(¢p).
Let f be an entire function with f (0) =1, let (4,) be a sequence of

its zeros, let p < p is the least integer for which z ,1n|"”1<+oo and let

neN

Q, be the coefficient at z” of an exponential factor in the Hadamard-Borel

representation of an entire function f of order p e (0;+0).
Theorem 2 (see [6-9, 17-21, 35-44, 56, 57]). Let f be an entire
function of order pe(0;+00) with zeros on a finite system of rays
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{zzarg=y}, je{l..m}, O<y,<y,<.<y,<27z. Then the
following assertions are equivalent:
1) for some p, e (0; p) and each je({1,...,m} holds

Nty ; ) =Ajt"+o(t”), t—>+wo, A;e[0;+0),
and, in additon, for integer p and some p, € (0; p) and 5, €C

> AT =6 +0(r ), T >0
0<|A,[<r

2) f isafunction of improved regular growth with indicator h(y). Moreover,
if p is anoninteger number, then

() =3 hy():

where h;(p) is a 2 -periodic function defined in the interval [y oy +27)
by the equality

T\
hi(p) =———cosp(p—y,—7)-
sinzzp

For peN, we have
TfCOS(P(P+t9f)+Zhj((/’): p=p,
h(p) =
Q,cos pg, p=p+1,
where 7 =‘5f /P+Qp‘v 0, :arg(gf/p+Qp) and h(p) is a 2z-
periodic function such that on [y ;v +27)

. A,
hi(®) =A,-(7r—<o+wj)smp(¢—t//,-)—jCOSp(co—V/,-)-
3) for some p, (0; p) there exists a sequence (I) such that 0<r, T 4o,
ro,—r” =o(r/*) as kK — oo, and uniformly in ¢ €[0;27]:
In|f (re")| =2h(p) +o(r*), k —>o0;
4) for some 2,€(0;p) the relation
In| f (te')|
j—dt——h(¢)+o(rﬂ4) r —> o0,
Yoy

1
holds uniformly in ¢ €[0;2x];

5) forsome p, € (0; p) and k, € Z andeach k e{k,;k, +1 ..k, +m -1 ,
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C.(r)=cr”+o(r™*), r >+,

where
2

1 —ik PN —iky;
c,=— | e ™“h(p)dp= Ae™™is
! 2”?[6 (p)do pz_kzjzﬂl e
if pe(0;+:)\N; for peN the following relation is true:

P S _ik
A_ Vi k =
pz_kz; i€ ||¢p P,
i6;
7:€ 1 iy
~ = NApi k=p=
C, = 2 4pJZ:1: i€ , p=P
0, |k|=p=p+1,
%, k=p=p+1

6) for some p, € (0; p) and every q e[l +o0), one has
) 1/q

1 2 In‘ f (re'f/’)\

_J' -

> —h(p)

dor =0(r®"), r —>+o.

0

4.9. The Hardy space. Above, we discussed the factorization of entire
functions. Similar problems can be considered for other classes of holomorphic
functions. Let 1< p <400 and H p(<C+) be the space of functions holomorphic
in the right-hand half-plane C, :={z =x+1iy: x>0}, for which:

| ] :=sup{| f (x+iy)|: x>0} <+o0, p=-oo,

400

||f||p:=sup{j|f(x+iy)|pdy:x>0}<+oo, p L +0).

Theorem 1 ([26, 47, 52, 54]). Every function f eH (C,), f 0,
1< p<+o, can be represented in the form
f)=emo [ it A,
‘An‘slz+ﬂn‘ﬂﬂ‘>ll+ z/ 4,

1% (z+i) 17 (z+i)
exp{ni J (L+t2)(t +i2) In|f°(t)|dt+7r J (L+t2)(t +i2) dh(t)}’ =

—o —0
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where a, and a, are real constants, a, <0, f,eL,(IR) is some function, h
is a nonincreasing function on (—oo;+00) whose derivative is equal to zero
almost everywhere, (4,) is the sequence of zeros of the function f , satisfying

0o +(Inl f t +00

Re—ﬂ"z<+oo, j|—°(2)”dt<+oo, J-iz|dh(t)|<+oo. @)
11+ |4, o, L+t 21+t
Conversely, if the constants a, and a,, the functions f; and h, and the
sequence (4,), 4, €C_, satisfy the above conditions, then the function f ,

defined by formula (1), belongs to the space H,(C,) .

Example 1. The function f(z)=e™* belongs to H_(C,), because
|f(z)|=‘e’Z <lfor zeC,.

Example 2. The function f(z)=(+2z)? belongs to H,(C,),
because

+00 400

L|f(x+iy)|dx=jw(l+x)—z+yzdysjwl+y

Theorem 2 (Paley-Wiener) ([26, 47, 52, 54]). The space H,(C,)

coincides with the class of functions f holomorphic in C, and representable
as follows:

dy=x, x>0.

2

f(z)= [ e %q(t)dt, Rez>0,
0

where q e L, (0;+0).
4.10. The Fourier transform. The convolution of functions. The

Fourier transform of a function f :R — C is defined as the function ?(y) ,
given by the formula [26, 47, 52, 54]:
A 1 .
f(y)=—= [ f(t)e™dt. (1)
N2 ,J;o
The operator F, which maps a function f to the function f by formula (1),
is called the Fourier transform operator. Formula (1) can be rewritten as:

A

f =F(f). The inverse Fourier transform of a function f :R — C is defined
as the function f , which is given by [26, 47, 52, 54]:
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F(0)= \/%T F(y)edy %)

AN

The operator F~*, which maps a function f to the function f using formula
(2), is called the inverse Fourier transform operator. Formula (2) can be

rewritten as: f=F !(f). Under certain conditions, the Fourier integral
formula holds [26, 47, 52, 54].

F0=—= (e[ T et |ay. 3
0= [ 10 ®
The last formula can be rewritten as: f =F *(F(f)). The inverse Fourier
transform of a function f will be denoted by ? It is obvious that
f(y)=f(y)= f(tyedt
5l
Example 1. If
1, <o,
£ = IX|<o
0, |X|>O',
_ sin(oy)
-iyo »\/2/7r—, y=0,
O i i y

f(y)=—m= e
f 'yF o217, y=0.

Example 2. For every function f eL,(R) and each y, €R holds

then

f(y—y,)=€""f (t).. Indeed,
A 1 * ) 1 . .
f — =—— | f(t e_'(V—YO)tdt — f(t elyote—lytdt .

(y yO) \/E:L ( ) _hzﬂ- 7_[0 ( )

Example 3. For every function f €L (R) and each t, R holds
f(t—t,)=e ¥ (). Indeed,

f(t-t,) = rj f(t—t,)e™dt=
-—— T f(u)e Mgy =g o L T f (u)e™du .
27 N2r 2,

Example 4. Let f(x)=e . Then
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?(y):% I e Mot = \FJ. el cos Ytdt_\Fy 1+1

Example 5. Let f(x):% a € R\{0}. Then, by the residue
X+

2
(24

theorem, we have

f(Y) \/— _" 2 7iytd'[ = %\/%e‘” .

Example 6. Let f(x):e“’xz, a € (0;40). Then, by Cauchy’s
theorem, we obtain

—at? —|yt oy —ag? —iy.
dt=—— e e Vdg=

t(y)= \/—Ie «/_m.y

+o0
_ 1 e7y2/4gz J‘ efaf dgz e,y2/4a

Vr o V2a

m—a.fz _ z
Le dé \E.

Thus, f(y)=Af(y) if A=1and f()=e "2,

because

The convolution of two functions f:R—>C and ¢:R—>C is
defined as the function f * ¢, given by the following formula [26, 47, 52, 54]:

f ¥ g(X) = j f(x—1)p(r)dz .

Example 7. Let f(x)=x and
1 |¥<1,
#(x) 2{0, X >1.
Then

+00

f*(p(x)_jf(x r)go(r)dr_j(x 7)dr=2x.

—o0 -1

Example 8. Let
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F(x) = 1, x=0, ()= 1, x=0,
0, x<0, 7o x<o.

Then

f *p(X) = j f(x-r)dr:jdr:x, x>0,
0 0

f *p(X) = j f(x—7)dr =0, x<0.
0

The above formulas are valid under certain conditions.
A

Theorem 1. If f el (R), then the function f is continuous
and bounded on R and ?(y)—> 0as y—>oo.

Theorem 2. If f e ,(R) and peL,(R), then f *p=+27 ?(;)
Proof. Using the Fubini theorem, we obtain

j f *p(x)e ¥dx = j f (t)dt j P(x—t)e ™ dx = j f (t)e Mdt j p(u)e™du.
This implies the required statement. »
Theorem 3 ([26, 47, 52, 54]). If the function f €L, (R) is continuous

on R and is of bounded variation on each interval [a;b] =R, then at every

point x e R the Fourier integral formula (3) holds, where the outer integral is
understood as a Cauchy principal value integral.
By S(R) or J(R), we denote the set of functions that have all

derivatives on R and
(vnez,)(VpeZ,):|f], :=Sup{|X|p‘f(n)(X)‘:XeR}<+oo.
The space S(R) is called the space of rapidly decreasing functions. For

example, the function f(x):e‘Xz belongsto S(R).
Theorem 4 ([26, 47, 52, 54]). The Fourier operator is a one-to-one
mapping from S(R) onto S(R). For every function f € S(R) at each point

x e R, the following dual formula
f(x)= f (y)e™dx,
=1

the integral Fourier formula (3) and Parseval s equality
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+o0 40| A 2
[lT@[dt=[[f(y)| dy,

are valid.
If feL,(R), then the function ¢, (t) = f (t)e™ does not necessarily

belong to L, (R). This will be the case, for example, if f(t)=1/(1+[t]). In

this regard, the definition of the Fourier transform in the space L,(R) is
introduced differently. The Fourier transform of a function f € L,(R) or the

L, -Fourier transform of the function f € L,(R) is called a function fe L, (R)

such that
2

dy=0.

a—>+o

+o0
lim j
00

t(y) -% [ et

The inverse Fourier transform of a function ? eL,(R) is called a function
f e L, (R), for which [26, 47, 52, 54]
2

dx=0.

a—>+o

+o0
lim j
00

£(x) —% [ 7 (y)edy

Theorem 5 (Plancherel) ([26, 47, 52, 54]). For every function
f eL,(R) there exists its L,-Fourier transform and the Parseval equality
holds:

[T
4.11. Intuitive ideas about generalized functions. When studying
physical processes, Dirac used a function ¢ that has the following properties
[10, 11, 15, 55]:
1) 5(x)=0 forall xeR;

0, 0,
2) 609 = {+oo X:: 0;

2 +o0
dy= [ |f() dx.

+o0

3) [s(x)dx=1.

In his studies of physical processes, Dirac arrived at conclusions that
were consistent with experimental results. However, among integrable
functions, there are none that satisfy conditions 1)-3). Therefore, such a
function o should be considered in a different sense. This can be done
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similarly to one of the methods used to introduce irrational numbers.
Specifically, two fundamental on @ sequences (u,) and (v,) of rational
numbers are called equivalent if u, —v, -0 as n—oo. This relation is an
equivalence relation and partitions all fundamental sequences on Q into

mutually disjoint classes. Each such a class is called a real number. This class
u, i.e., the real number u, is uniquely determined by one of its elements, that

is, by one of the sequences (u,,) . This fact is denoted as u = (u,) . The sum of
two real numbers u=(u,) and v=(v,) is defined as the equivalence class
u+v containing the sequence (u,+V,). From this definition, all known

properties of the set of real numbers can be established. Each rational number
U corresponds to the class containing the sequence (u;u;...) . Numbers that are

not rational are called irrational or generalized elements of the set of rational
numbers. For instance, the number /2 , defined by the sequence of decimal
approximations 2= (4,4;1,41,...), belongs to this category. Thus, if we only
know rational numbers, the number /2 is a generalized element of the set Q

and a generalized solution of the equation u? = 2.

The theory of generalized functions, like the theory of real numbers,
can be constructed in various ways. Let us first consider the approach proposed
by R. Sikorski and J. Mikusinski. A sequence (f,) of continuous functions

f, :R— C defined on R is called an MS-fundamental sequence [10, 11, 15,
55] if there exist a sequence (F ) of functions F :R— C and an integer

n>0 such that: 1) F™(x) = f (x) forall ke N and xeR; 2) the sequence
(F.) converges uniformly on every compact of R. Two MS-fundamental
sequences (f,) and (q,) are called equivalent [10, 11, 15, 55] if there exist an

integer n>0 and sequences (F,) and (d,) such that: 3) F™(x)= f (X),

oM (x)=g,(x) for all keN and xecR; 4) the sequence (F —®,)
converges uniformly to zero on every compact of R . This equivalence relation
partitions all MS-fundamental sequences into mutually disjoint classes. Each
such a class is called a generalized function. A generalized function f is

uniquely determined by any sequence (f,) belonging to the corresponding
class, and this fact is denoted as: f =(f,) . Every continuous function f isa
generalized function because we can take f, =f, n=0 and F, = f, .

According to the Weierstrass theorem, for every continuous function
f:R—>C on R, there exists a sequence of polynomials that converges
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uniformly to f on every compact of R. Hence, for every MS-fundamental
sequence (f,), there exists an equivalent sequence (g,) of infinitely
differentiable functions. Therefore, when referring to a generalized function
f =(f,), we assume that (f,) is a sequence of infinitely differentiable
functions. If the sequence (f,) is MS-fundamental, then [10, 11, 15, 55] for

every neZ the sequence (fk(”)) is also MS-fundamental. Here,

f™ = (f, V) denotes the n-th derivative of the function f. Thus, every

generalized function has derivatives of all orders. The product of two arbitrary
generalized functions cannot be naturally defined in the space of generalized
functions. This problem remains insufficiently studied. In practice, generalized
functions are multiplied by assigning a specific meaning to the product in each
particular case. However, the product of a generalized function and a
sufficiently smooth function can be correctly defined within the space of
generalized functions.

Let C{”(R) be the set of all infinitely differentiable functions
@:R—C on R such that ¢(x)=0 for all X outside some finite interval
[a;b]. The integral of the product of a generalized function f =(f,) and a
continuous function ¢ is defined as the limit [10, 11, 15, 55]:

Jummmw;ggjnumum» (1)

The limit (1) does not exist for every continuous function ¢ . However, if

e C(R), the limit (1) exists because, for a suitable n, we have:

+00

[ £ 09p0)dx= [ R (9™ (x)dx,

and the sequence (F,) converges uniformly on compact sets. The most
important generalized function is the Dirac o -function. It is a generalized
function & =(5,) defined by an MS-fundamental sequence satisfying the

following properties [10, 11, 15, 55]: a) o, (x) =0 forall ke N and xR ; b)
there exists a sequence (g), O<g —0, such that &, (x)=0 for all
xe[-g;&1; ¢ all o6, are infinitely differentiable functions on R; d)

I&k(x)dx=1, k e N. A sequence satisfying properties a)-d) is called a J -

sequence.
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An example of a o -sequence [10, 11, 15, 55] is the sequence
5,(x) =kea (kx), where a(x) =c¢,exp(~1/(1—x?)) if [x| <1 and @ (x)=0

if |x|>1, and the constant ¢, is chosen such that jék(x)dx=1. From

—00

conditions a)-d), it follows that l!im 0,(x)=0, x=#0, and l!im 0, (0) =+00.

Theorem 1. If 5§=(5,) is a o -sequence, then for any continuous
function ¢ :R — C on R holds

lim | 5,099000 = 9(0).
that is N
T 5(9p(x)dx=(0) .
Proof. According to_The mean value theorem, we have

[ 8.0900)dx= | 5, (Np(x)dx =

—00 —&k

&K
=p(8,) | ()dx—>p(0), k >0, -5 <6, <. »
,gk

Theorem 1 provides a way to give a certain meaning to equations
[ 30)p()dx=(0), [ S(x)dx=1,

and to interpret the & -function as a sequence (5k (x)) of continuous functions

with certain properties: &6(X) =S, (x) for large k. The interpretation of

generalized functions provided above is useful for addressing a number of
problems. At the same time, in many cases, a more convenient interpretation of
generalized functions is the one proposed by L. Schwartz and S. Sobolev (see
[10, 11, 15, 54]).

4.12. Space C{”(R). Let C™(R) be the set of all functions

@:R —C that are infinitely differentiable on R, and let C{* (R) be the set
of infinitely differentiable functions ¢:R — C with compact support, i.e.,

those functions ¢ e C(IR) that take the value zero outside some interval
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[a;b]< R (this interval may depend on ¢). An example of a function
@ € C(R) is the so-called “bump function” [10, 11, 15, 55]:

() = clexp(—ll(l— xz)), x| <1,
x| >1,

where ¢, >0 is a constant. Further, we assume that this constant is chosen so
that

[ @ (xdx=1.
Let o, (x) = %a&(g) . &£>0. Then [10, 11, 15, 55]:

1) w, eC{(R),
2) 0.(x)=0, xeR,

2
Lexp| ——5— |, N<&,
3 o.(X)=1 ¢ £°—X

0, |X| >¢g,

4) +J'wa)g(x)dx =1,

. 0, x=0,
5) limw,(x)=
£—0+ +oo, X=0,

6) 5|a)g(x)|SCl, xeR, £e€(0;+x).

w, (@)

Lo (Z)

-

iy - 7 € A

A function ¢:R — C is said to have compact support [10, 11, 15, 55]
if there exists an interval [a;b]c R such that ¢(x)=0 for all x¢[a;b].
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Hence, Céw) (R) is the set of all infinitely differentiable functions ¢:R — C
with compact support.

A sequence (¢, ) is called convergent [10, 11, 15, 55] on C{”(R) to
0, if there exists an interval [a;b]JeR such that: a)

(Vk eN)(Wx e R\[a;b]): ¢y (X) =0 ; b) for each neZ_ the sequence ((pﬁ”))
uniformly converges on [a;b] to zero, i.e.,
(VneZ,)(Ve>0)(3k e N)(Vk k") (vxe[a;b]):|pf” ()| <&
A sequence (¢, ) is said to converge [10, 11, 15, 55] in Cé“’) (R) to a function
@eC{(R) if the sequence (¢ —¢) converges in C§(R) to zero. Hence,
o =@ in CS(R), if there exists an interval [a;b]c R such that: c)
(vxeR\[a;b]): p(x) =0 and (VkeZ,)(vxeR\[a;b]):@ (x)=0; d) for
each neZ, the sequence (go,ﬁ”)) uniformly converges on [a;b] to o™, that
is
(V[a;b]c R)(VneZ ) (Ve >0)(Fk e N)(Vk >k")(Vx e[a;b]):
A" ()= (9] <e.
Example 1. The function @, is a function with compact support.
Example 2. If peC{?(R) and o eC™ (R), then apeC{”(R),
that is the space Cé‘”) (R) is invariant under multiplication operator by
infinitely differentiable function.

Example 3. The function ¢(t) = @, (t)sint belongs to C(R).
Example 4 A sequence ¢, (X)=am(X)+ @ (X)/k converges on

CENR) to wy(x).
4.13. Spaces of fundamental and generalized functions of one
variable. A linear functional on a space Cé‘”) (R) is called [10, 11, 15, 55] a

function f:C{?(R)—C such that for any ¢, eC, ¢, eC, ¢ eC{?(R)
and @, C$?(R) holds f(cp +Cp)=c f(@)+C,f(p,). A functional

f is said to be continuous on C{”(R) [10, 11, 15, 55] if, for any sequence
() that converges in C; (RR), holds I!im fp)="1 (!imwk). In order that a
linear functional f:C{”(R)—C be a continuous [10, 11, 15, 54], it is
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necessary and sufficient that for every compact set KRR there exist
¢, €(0;+0) and veZ, such that |f(§0)|SCIZSUp{‘¢)(i)(X)‘ZXE K} for all
i<v

@ eC(R) that are equal to zero outside K .

The space C{(IR) is called the space of test functions [10, 11, 15,

55], and it is often denoted by D . The elements of the space D are also called
test functions.
A generalized function on R or a distribution on R is defined as any

linear continuous functional on the space C{ (IR). The set of all generalized
functions is called [10, 11, 15, 55] the space of generalized functions and it is
typically denoted by D’ or (C§” (R))’. The value of a function f €D’ on the
element @eD is often denoted by (f;p) or (f;p). Therefore,

f(p)=(f;p)=(f;p). A generalized function is often denoted by f(x),
where x € R. However, in general, it is not possible to speak about the value
of a generalized function f at a point xeR. This is because generalized
functions f(Xx) do not have pointwise values in the traditional sense.

Example 1. The functional f(p)=¢(0) is linear and continuous,
which means it is a generalized function.

Example 2. The functional f(¢)=@(0)+2¢"(0) is linear and
continuous, that is, it is a generalized function.

Example 3. The functional f (¢)=¢?(0) is not linear and therefore

is not a generalized function.
Example 4. The functional f (¢)=¢@(0)+1 is not linear and therefore

is not a generalized function.

+o0

Example 5. The functional f (@)= j X@p(x)dx is linear and

continuous, which means it is a generalized function. Integrating by parts, we
conclude that it can also be represented in the form:

_1*00 2 1 _1+°° 3 n _
f(¢)—Z_jx go(x)dx—gjx 9" (X)dx =

1+ 1+ 1
== [ xp(x)dx+= | x20'(X)dx +— | x}0"(X)dx =....
3_£¢() 6_jw @'(X) 18_[0 ¢ (X)

Example 6. The functional
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+00

(fi0) = [ 1,009 (x)dx

is a generalized function for every f, e C(R).
Example 7. Every function F :IR — C of bounded variation within an

+00
interval [a;b] = R defines a generalized function f(¢)= J p(t)dF(t) .

Example 8. The functional f (@) =™ (0) is a generalized function.

A generalized function f e (C$” (R))’ is called positive if f(¢p)>0
for all functions @<C{”(R) such that @(x)>0 for xeR. For every
positive generalized function f e(C$™ (R))’ there exists a left-continuous and

non-decreasing on R function F:R — R such that f(¢)= I @(t)dF(t) for
all peC§”(R), that is, every positive generalized function is a measure.
Example 9. The functional

+o0

f (@)= lim o(x)dx

-0+ ¥ X4ig
—o0

is a generalized function denoted by

X+i0
4.14. Regular generalized functions of one variable. A function
f:R—C is called locally summable or locally integrable on R [10, 11, 15,
55] if it is integrable on every finite interval [a;b] = R . This fact we denote by

fe Ly 1oc (R) . Every locally integrable on R function f:R>C generates a

linear continuous functional on the space Cé‘”) (R) (also denoted by f ) by the
formula [10, 11, 15, 55]:

+00

(f:0)= [ F()p()dx. (1)

—00

Thus, every locally integrable on R function fisa generalized function [10,
11, 15, 55]. Consequently, the value of the functional f e (C{™ (R))' on the

element ¢ € C”) (RR) is also denoted by the symbol I f (X)p(x)dx. Thus,

—00
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+00

f(@)=(F:0)= [ f()p(x)dx.

In particular, each constant ¢c e R defines a constant generalized function (also
denoted by ¢ ) and, we have [10, 11, 15, 55]:

(©9) = [ cp(x)dx.

A generalized function f is called [10, 11, 15, 54] regular if it is

generated by some locally summable on R function f according to formula
(1). A generalized function f is called singular if it is not regular.

Example 1. The equality (f;p)= [ e*p(x)dx defines a generalized
function.

Example 2. If f eC*™(R) and ¢eC{”(R), then, integrating by
parts, we obtain

+00 +00

[ F09p()dx=—[ f(x)¢'(x)alx,

—00 —00

+00

[ £70)p(dx = [ f()e"(x)dx, ...

—00 —00

+00

[ 1900p0)dx = (1) [ (x)p® (x)dx.

4.15. The Dirac ¢ -function and other singular functions. The
functional &, defined by the equality (J;¢)=¢(0), is called [10, 11, 15, 55]
the Dirac o -function. Such a functional is linear and continuous, but is not
generated by any locally summable function. Thus, the & -function is a singular
generalized function. The function &6, , defined by the equality
(04, 19) =(X,) , is called [10, 11, 15, 55] the & -function concentrated at the

point X, . Itis also denoted by &(X—X,) . Therefore,

(5;0) = [ 500p(X)dx=p(0), (5,,:0) = | S(X=%)p(X)dx = (X,

—00

The function 1/x is not locally summable on R. However, it
generates a linear continuous functional f on C{*(R) by the equality
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(Fi) =V.p. | Sp()x. ®

. . L 1 .
This generalized function is denoted by @—. In this case, we assume that
X

@(X)=0 for x¢[a;b]. Moreover,

V. p.Tl(p(x)dx = dex +V. p‘?@ dx =
Jx . X > X

= j)-—go(x) —00) 4y 1 v, pT@ dx ,
a X a X

>0

v.p.jb‘@ dx=1lim [_Jij)' J@qup(O)ln

g
a i)

b
and the integral I X (p(x) —p(0))dx exists as a Riemann integral. The
a

a

function 1/x? is not locally summable on RR. However, it also generates a

generalized function goliz by the formula [10, 11, 15, 55]:
X

(gol % ; ¢)) =V. p.:[o —qo(x)x—z(p(O) dx .
The product of two generalized functions cannot be defined naturally.
The product of a generalized function f e(Cé‘”) (R))" and a function
qeC™ (R) is a generalized function F =qf such that [10, 11, 15, 55]
(VoeC{(R)):F(p) = f(ap).
Example 1. If qeC™ (R) and q(0)=0, then g5 =0, because
(90;9) = (6;99) =4(0)¢(0) =0=(0;¢) .
Example 2. If qeC”(R) and q(0)=1, then qo =0, because

(96:9) = (;09) =a(0)9(0) = (0) = (5;9) -
Example 3. Since

(x0kio )= pion) v T 2o [ oot -wo),

we have xgo1 =1.
X
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4.16. Derivative of a generalized function of one variable. The
derivative of a generalized function f e (C{™(R))" is called [10, 11, 15, 55] a

generalized function e (C$™ (R)) such that
(VoeCs(R)):(fh0)=—(T:9) . (1)
By definition, we have f©@ =f . If keN, then the k -th derivative of a
generalized function f e(C((,“’) (R))" is called a generalized function
f® c(C(R)) such that (VoeCE(R):(fY;0)=—(F&D;0) (see

[10, 11, 15, 55]).
Every generalized function has derivatives of all orders and the K -th

derivative of a generalized function f e (Céw) (R))' is a generalized function
f & e (CF?(R)) such that (Ve CS? (R)): (f1;0) = (D™ (f;0").

Remark 1. The definition of the derivative of a generalized function by
equality (1) is based on the fact that if the function f is continuously

differentiable on R and ¢ e C{”(R) , then

400 +00

[ O/ ®Odt=—] f'Oep(t)dt.
Example 1. Let B B
B x>0,
() = {O, x<0.
Then
(739) =—(1:9) = [ n(O@'®)dt = [ ¢'(t)dt = p(0) .
0 0
Hence, ' =96

Example 2. It is obvious that (6";¢) =—(5;¢") =—¢'(0) . Therefore,
the derivative of a & -function is a generalized function 6’ which corresponds
the number —¢'(0) to a function ¢ € C{” (R) .

Example 3. Evidently, (6'(X—%y);®)=—(0(X—%y);¢) =—¢'(X,) -
Therefore, the derivative of a function S(x—Xx,) is a generalized function
5'(X—X,) which corresponds the number ¢'(x,) to a function ¢ € C{(R) .

Example 4. (6*;9) = (-2 (5:¢") = (-1 (0).

Example 5. If f(x)=sinx, then
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+o0

(sin' ;@) =—(sinx; ') = — [ sin x- ' (x)dx =

= ( i - _[ cosx-go(x)de:
= [ cosx-p(x)dx=(cos x;p) , p e C*(R).

Thus, sin’ =cos, in the sense of generalized functions. Similarly,

+00

(cos' ;) =—(cos X; ') = — [ cos X+ ' (X)lx =

= ( +§++_fcsinx-go(x)dsz
:—Tsinx-go(x)dx:(—sin X;9), peCqy (R).

Hence, cos’ =—sin, in the sense of generalized functions.
Example 6. We have the equality:

((In|x|)’;j ~((In[x):¢') = j(p(x)ln|x|dx_

:—.[ @' (X)In xdx — Iq)(x)ln( x)dx =
- j (20 =90, . I P()=p(0) 4
X X

:qu(x)—(ﬂ(o) dXZV_p_TMdXZ(SOE;(pj, peCy(R).
—© X — X X
Example 7. Since
1Y 1), ) oM -¢(0)
[EREEE.

—up 2O

we have
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(et
X tx2’

Remark 2. When considering generalized functions above, we taking
into account as the main space D :Cé“’)(R), that is, we considered

generalized functions from the class (Cg”) (R))". However, other spaces can

also be taken as the space D , for example, C*(R), S(R), C{(R), various
spaces of holomorphic functions, and others.

4.17. Harmonic and subharmonic functions. A function u:R? >R
is called harmonic in a domain D if it has continuous second-order partial
derivatives in D and satisfies at each point (X;y) € D the Laplace equation [3,

12, 26]:
2 2
6—g+a—g=0, (x;y)eD.
ox= oy
The value u(x;y) of a harmonic function u at a point (x;y) is denoted as
u(z), and it is assumed that z=x+iy. The same property applies to

subharmonic functions, which will be discussed further in this section.
2 2
o° .

The operator A = —t—5 s called the Laplace operator [3, 12, 23,

ox° oy
26]. Hence, harmonic functions are precisely the functions that are solutions to
the Laplace equation Au=0. If a function f is holomorphic in a domain D,
then the function u=Ref is harmonic in D. Similarly, the function
u=Imf isalso harmonic in D . For a continuous function U in a domain D

to be harmonic in D, it is necessary and sufficient that [3, 12, 23, 26]
1 f i0
u(z)=— |ulz+ 0
(&)= I 2+ 0
forall ze D and p, 0< p<inf{|¢c—z|:g €oD}. Moreover,
1 .
u@2)=— [[ u(¢)dédy , &=¢&+in,
P ¢-2<p

for every harmonic function U .

Example 1. The function u(z) =e*cosy is harmonic in R?, because
2 2

ou ou X
yze cosy and W:—e Cosy.
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A function w:D —[—0;+00) is called [12, 23, 26, 46, 47] upper
semicontinuous on a set D if (VzeD): lim w($)<w(z). A function
D>{—z

W: C — [—o0;+0) is called subharmonic in a domain D < C if it is a upper
semicontinuous in D and for every z D there exists 1, such that for every
p€(0;ry) holds (see [12, 23, 26, 46, 47])

1
w2)so— [ wg)lde], (1)

oU(z;p)
2z
. 1 i . .
that is, W(Z)SZ—IW(Z + pe'?)d6 . The integral (1) is either convergent or
T
0

divergent to —oo. The inequality (1) in this definition can be replaced by the
inequality w(z) siz ” w($)d&dn , where & =& +in, or the inequality
Y

U(z;p)

p2r

w(z)sizjjw(zwei@)rdrde.
ﬂ-p 00

Let C;(D) be the set of all functions ¢:R*—C infinitely
differentiable in the domain D whose values are zero outside some compact
set Ec D, let Cg, (D) be the set of non-negative functions ¢ € Cy (D). For
a function w:C —[—o0;+0), W#—o0, to be subharmonic [12, 23, 26, 30, 46,

47] in the domain Dc C, it is necessary and sufficient that it be locally
summable in D and

(VpeCZ,(D)): H W(z)Ap(z)dxdy >0 . @)

If the function w has continuous second-order partial derivatives in D, then
the condition (2) is equivalent to the condition [12, 23, 26, 30, 46, 47]:

(Vz=x+iyeD):Aw(z) >0. (3)
It is follows directly from the Green formula:
j j W(z2)Ag(z)dxdy = j j AW(2)p(z)dxdly . (4)
D D

Thus, a function w is subharmonic in the domain D if Aw is a positive
generalized function. Therefore, there exists a unique positive measure x such

that
(Vo eCZ(D)): j j W(z)Ag(2)dxdy = 27 j od . ()
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This measure p is called the Riesz measure of the function w. We can say

1 . . . :
that x=—Aw in the sense of generalized functions. The Riesz measure,
v

interpreted as a function of sets, is defined on all Borel subsets E < D and is
finite on every compact set from D.

Example 2 ([12, 23, 26, 45-47]). If the function w is harmonic in the
domain D, then it is subharmonic in D.

Example 3. The function w=e* + y? is subharmonic in R?, because
2 2 2 2
0 \;v X, 8_\;v:2 and a—\;V+a—\;v=e"+220.
OX oy ox~ oy
Example 4. If the function w= —o is subharmonic in a domain D,
and 77:[—o0;+0) —[0;+00)) is an increasing and convex function on an
interval containing the range of w, then the function w(z)=n(w(z)) is

subharmonicin D.
Indeed, for twice continuously differentiable functions u and 7, we

have

Aw=n'Au+((Bw!x)? + (Bwldy)*)n" 0.
This implies subharmonicity of @ . In the general case, we obtain the required
conclusion from Jensen’s inequality, according to which for any ze D and
r<r,:

0@ =1 5 | woldel |5 [ el

|¢-zf=r |¢-z=r
Example 5. The function h(z)=|n|z| is subharmonic in C for all

peCy(C) and

1 1
H In|z| Ap(z)dxdy = —(0) = — j j od s,
2 27
©) ©)
is its Riesz measure, where u =9, is the Dirac measure centered at the point
0.
Indeed, subharmonicity of the function h is obvious, since h is

harmonic in C\{0} and h(0) =—o. Further, according to Green’s formula,
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”In|z|Ago(z)dxdy [” ” Jln|z|A¢(z)dxdy

zZj<e  |z|>e

. jim|z|g_<:_¢a n|2|j|dz|+o(1)— j¢|n|z|a_z’|dz|+o(1):

I|= |7=E

J'{ qo—C Sa— |>|/2¢cosﬁJ|dz|+o(1):

2
2
J‘ [go— dx — A dyj+o(1)_
|z]=E

4

- j o(£6)d0 +0(1) = 27¢(0) +0(1) , & —>0+.
Since the left-hand side does not depend on ¢, we obtain the required
conclusion from this.
Example 6. The function w(z) =|z|”, 0< p <+, is subharmonic in

C and

+1 -2
,U(D) :MJ.J-PV dxdy
T
(D)
is its Riesz measure. Indeed, if p>2, then the function w is a twice

continuously differentiable in C and Aw=2p(p +1) z|pf2 . This implies the

required statement. In the general case, we will use Green’s formula.
According to it, for all ¢ € C5 (C) holds

”|z|p Ap(z)dxdy = [ H + J‘J- |z|” Agp(z)dxdy] -

|zj<e  |z>e
=2p(p+1) ” 1217 p(z)dxdy +0(1) =
|z]ze

:2p(p+1)“|z|”*2(p(z)dxdy+o(1), &0+,

which proves the required statement.
Example 7. The function w(z)=r”cospp, 0<p<+w, z=re?,
|qo| <7 ,issubharmonic in C and its Riesz measure is defined by the formula
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u(D) =L [ (et
D (—0;0]
Indeed, since w(z) =Re(z”), the function w is harmonic in a domain
D_=C\{z:Imz=0,Rez <0}. Therefore, taking a sufficiently large R, by
the Green formula, we obtain

[Jw@ap(gdxdy = [ w(z)ap(2)dxdy =

0
= I Wa—(p|dz| =2 I (=t)” cos(pr) @'(t)dt =
a(D_~{z{z|<R}) -R

0
=2pcosap j (-t Lo(t)dt

whence it follows the required statement. Note that this function is continuous
in C, but is not differentiable on the negative real ray.
Example 8. If f isa holomorphic function in the domain D, then the

function W(z)=ln|f(z)| is subharmonic in D and its Riesz measure is
determined by the equality

uD)=> 1
AneD
that is
u(D=)> 5,
AneD

where &, is the Dirac measure centered at the point A,.

In fact, since In|f(z)| is a harmonic function in D\{4,}, using
Green’s formula, we get

H In| f (2)| Ap(2)dxdy = > ﬂ In| f (2)| Ag(z)dxdy +0(1) =

(D) MeD |3 —zze

== j o(z )M|d|+o(l) 27" 9(4,)+0(1), £ —>0+.

€D |1 -zpze 2neD
Example 9. If w is a subharmonic function in D, then the function
is also subharmonic in D.
In fact, w"(z) =max{w(z);0}, and a maximum of two subharmonic
functions is a subharmonic function.

+

W
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Example 10 ([12, 23, 26, 46, 47]). If f is a harmonic function in the
domain D, then the functions W(z)=ln|f(z)|, w(z) =In*|f(z)| ma |f(2)|",

a >0, are subharmonic in D.
Example 11 ([12, 23, 26, 46, 47]). If u is a harmonic function in the

domain D and & >1, then |U(z)|" is a subharmonic function in D.

Example 12. The function W(Z):%In(x2 +y2) is subharmonic in
C, because f(z)=z is an entire function and
w(z):%ln(xz+y2):ln|z|=ln|f(z)|.

In this case, =0 is its Dirac measure, since using Green’s formula, we

obtain
ﬂln|z|Agp(z)dxdy:”(p(z)AIn|z|dxdy =
C (®

[ I+ J¢(Z)A|n|2|dxdy -

zZj<e  |z|>e

- j o(£)dO+0(1) = 270(0) +0(1) , & —>0+.

Example 13. The function w(z) =|z|”, 0< p <0, is subharmonic in

C and
+1 -2
/J(D) = MJ.J‘PV dxdy ’
T
(D)
is its Riesz measure. Indeed, if p>2, then w is a twice continuously
differentiable function in C and
Aw=2p(p+1) Z|p_2

This yields the required statement. In general case, by using Green’s formula,
for all p e Cy (C)

[[I2” Ap(z)dxdy = [[ p(2)Al2|” dxdy =

{1115 Jorssormor-

Z‘<a ‘Z‘>e.
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=2p(p+1)|[[|2]"” p(z)dxdy +0(@1) , £—0+.

Example 14 ([12, 23, 26, 45-47]). Let pe(0;+w0) and let h:R >R
is a p-trigonometrically convex and 2z -periodic function. Then

w(z) =r”h(d), z=re", is a subharmonic function in C . In particular, the

function w(z) =r” cos p@ is a subharmonic function in C.
Example 15 ([12, 23, 26, 45-47]). If f is an entire function, then

w(z) =In|f (2)] is a subharmonic function in C and x(D)= )" 1 is its Riesz
A,€D
measure.
Theorem 1. Let x4 is a positive measure in the domain D, which is

defined on all Borel sets from D and is finite on every compact set from D.
Then the function P(z):ﬂln|z—§|dy is subharmonic in every bounded
G

domain G such that G — D and its Riesz measure in G coincides with the
restriction x4 to G.

Proof. Indeed,
1 w
[ Pagdxdy =[] {j A?’(Z)dXdYJdﬂ:Z— [[e)du, pecs@). »
T
(G) (G)\(G) (G)

Theorem 2. Let w= —o0 be a subharmonic function in the domain D
and u be its Riesz measure in D. Then in every bounded domain G such that

GcD, the representation
w(z) =P(2) +Vv(z), (6)

is valid, where v is a harmonic function in G and P(z) :”In|z —4’|dy :
G
Proof. Let v(z) =w(z) —P(z) . Then

[[v@ap@ixdy =0, peCs (G).
(G)
Therefore, v is a harmonic function in G. For twice continuously
differentiable functions v, this follows from Green’s formula, and the general
case is reduced to it. »
Let us note that for a wide class of domains G, equality (6) can be
rewritten as:
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w2)=-[[9@)du+u@),
G
where g is the Green function of the domain G and
u(z):—J.w |d2].

Therefore, for a subharmonic in the domaln D function w= —0, and for the
corresponding class of domains G, GcD,the foIIowing formula holds:

w@)=-[[a(¢; Z)dﬂ—— j w2, )
(©)

which is a generalization of the Pmsson-Jensen formula for holomorphic
functions. Using formula (7) for subharmonic functions in C, one can obtain
analogues of the theorems of Weierstrass, Borel, Hadamard, and others, which
are well-known in the theory of entire functions. For more details, see [12, 23,

30, 46, 47].
Example 16. The function w(z) =In|sinz| is a subharmonic function

in C, u(D)= 1 is its Riesz measure,
keD

P(2)= [ In[z—¢ldu= Y In|z—K
lsl<6,5 ke-6;6
and

v(z) =Inlsinz|- P(z) =

ke—6;6

- > Injz=k|=In -
k=7

4.18. Self-control questions.
Formulate the definition of the convergence exponent of a sequence.
Formulate the definition of the counting function of a sequence.
Formulate the definition of the averaged counting function of a sequence.
Formulate and prove theorems on the equivalent definition of the
convergence exponent.
5. Formulate and prove a theorem on the connection between the convergence
exponent and the genus of the canonical product.
6. Formulate the definition of the genus of an entire function.
7. Formulate and prove the Poincaré theorem on the genus of an entire
function.
Formulate and prove the Hadamard-Borel theorem.
9. Formulate and prove theorems on the expansion of sine and cosine into
infinite products.

o E

oo
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10. Formulate the definition of the Fourier coefficients of an entire function.

11.Formulate and prove a theorem on finding the Fourier coefficients of an
entire function.

12.Formulate and prove a theorem on the type of an entire function of
noninteger order.

13.Formulate and prove the Lindel6f theorem on the type of an entire function
of integer order.

14. Formulate the definition of the space C{™ (R) .

15.Formulate the definition of a generalized function.

16. Formulate the definition of the space (C{™ (R))'.

17.Formulate the definition of the derivative of a generalized function.

18.Formulate the definition of a harmonic function.

19. Formulate the definition of a subharmonic function.

20.Formulate the definition of the Riesz measure.

21.Formulate the criterion for the subharmonicity of a function.

4.19. Exercises and problems.

1. Find the convergence exponent and the genus of a sequence:
1. A =K.

2. A4 =k*In*(1+k).

3. A, =¢€*.

4. A =In*(1+k).

5 A4 =k +k .

6. A =e¥ +k*.

7. A =€ +k*.

8. A4 =Ink.

9. A =2 +In*(1+k).

10. A =k®+kIn*(1+Kk).

2. (see [30, 31, 45-47, 51]) Prove that if (4, )<= C, is a sequence of complex

numbers such that |4 |<1 and ZReﬂk <+, then the Blaschke product
k

B(z)=H(z—ﬂk)/(z+Zk) uniformly and absolutely converges on every
k

compact set in C, and |B(z)|sl. If (4,)cC, is a sequence of complex
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numbers such that [4|>1 and ) Re, I|A]* <+, then the Blaschke
k

product B(z) = H(l— 2/ 24, )I(L+ 2/ A,) has the same properties.
k

3. Let

_ 0T TEl 2.
f(z)=e HE(ﬁ,pj

n

be an entire function of order pe(0;+w), where Q(z):ZV:kak is a
k=0

polynomial of degree v< p, p<p is the genus of the sequence (4,) of its

zeros and E(w; p) is the Weierstrass primary factor. Prove the following

assertions (see [13, 18,19, 23, 30, 31, 46, 51]):

1 o =Q,, 1<k<v.

1« Q.. kelLp,
2 ak:——Z—,ka+l,ak— * 1
k & 2X N k>p+1
o nzzllkﬂ,f P
1 1 RY (72
3.C,(R)==Q,R" +— — | =2 |, 1<k<y
«(R) 2Qk 2|<0<;<R {zj [R]
k

k R
4, ck(R)=—i [5] _1 > Ly Ck>v+1.
2k iR\ A, 2k o e R

5. (see [13, 23, 30, 46]) If there exists a sequence (R,) such that 0 <R, T +oo,
R,/R,,, »1as s—o,and

(VK eZ):mck(Rs)/Rf =C,,
then

(VkeZ):limC, (R)/R” =c, .
6. (see [13, 16, 30, 31, 45-47, 51]) Let pe(0;+x). Then
rlimwn(r)/rp = rlirﬂo N(r)/(pr”) if one of these limits exists.
7._>Esee [6, 16, 19_]>) Let p e (0;4+00) and A e[0;+x). In order that for some
p, €(0; p) holds

n(r)=Ar” +o(r*), r —-+o, )
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it is necessary and sufficient that for some p, € (0; p)
N(r) =ér" +0(r”?), r >+wo.
P

8. (see [6, 19]) Let A €[0;+<0). In order that for an entire function L of order
p € (0;+0) \N there exists a system U of disks with finite sum of radii such
that for some p, € (0; p) holds

In|L(z )| | | COSp(go 7r)+o(|z|"3), Upz=re” 5o,

where p e Argz, itis necessary and sufficient that for some p, € (0; p) holds
).
4. Let L(z)= H(l_ z/,1n) is an entire function of order p <1/2. Prove the

following assertions (see [1]):
1. If all 4, >0, then for every ¢ [0;27] there exists a sequence (r,) such

that 0<r, T 400 as k — 400, and
|L(re?)| = M (A+o(D)(cos pl—7)" 1), Kk —> -+,
2. If all 4,>0, then there exists a sequence (r,) such that 0<r, T +oo as
kK — +0, and
IL(r)| =M, (@+o@)(cos pr)""1,), Kk —> 0.
3. There exists a sequence (r,) such that 0<r, T 400 as k — +oo, and
m, () =M, ((L+o()(cos pr)" 7 1), k — -+,
where m_(r)=min{|L(2)|:|z| =r}.
4. If p=0, then there exists a sequence (r,) such that 0<r, T+ and
m_(r,) =M_(@+o@)r,) as k —> +oo.
5.1f
(Vp>0)3p, > p)Fa>1)3Ek)NVn=K) 1|4 [ 4| < (ak/ ny’A )
and q=(1-mpocty(zp))/ p, then there exists a C,-set of disks of zero linear
density such that
In|L(2)| 2 N (|z])—a@+o@)n(|z]), Co 3z —>0.
6. If all 4, >0 and the inequality (2) is true, then for each ¢, € (0;) holds
|L(re'")[= M (@+0(D)(cos p(p—7))" 1), T —>+0,
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uniformly in @ €[g,; 27 —@,].

7. If all 4, >0 and the inequality (2) is true, then there exists a sequence (r,)

such that 0<r, T +o0, 1, /1., =1 as k —+o0 and uniformly in ¢ €[0;27]
|L(re'")|= M (@+0@)(cos p(e— 7)) 1), k—>+o0.

8. If all 4, >0, then the following conditions are equivalent: a) the inequality

(2) is valid; b) there exists a C,-set of disks of zero linear density such that

IL(2)| =M _(@+0(D)|z]) as C, 32— o0; c) there exists a sequence (r,) such

that 0<r, T+o0, 1 /1, —1 and m_(r)=M_(L+o@)r) as k —-+o; d)

INM_ (r)=N(@+0(@))r) as r — +oo.

9. If the inequality (2) holds for 0 < o <1/ 2, then the series

iexp(N (rA) 1AL

converges for r €[0;R,), where R, = (zpctg(zp))"” .
10. If |4,4/A4,|<A<1 for all n>1, then INM_(r)=N(r)+O() as

r — +o0.
5. Find the Fourier transform of a function:

L f(X):{—l,XG[—Z;l],
0, xe[-2:1].

) f(x):{X,XE[O;l],

' 0, x[0;1].
0, x [0;1].

4. Find the Fourier transform of a function f if f(x)=¢(x) for Xe[—ﬂ,ﬂ]
and f(x)=0 for xe[—n;;r], where ¢ is a solution of the differential
equation ¢" + ¢ =0, satisfying the initial conditions: ¢(0)=0,¢'(0) =1.

5. Find the Fourier transform of a function f if f(x)=¢(x) for x€[0,1] and
f(x)=0 for xe[O;l], where ¢ is a solution of the differential equation
¢" — @ =0, satisfying the initial conditions: ¢(0)=1,¢'(0)=0.

165



6. Find the Fourier transform of a function f if f(x)=g(x) for xe[-10]
and f(x)=0 for x¢ [—1, O], where ¢ is a solution of the differential equation
" —4¢p =0, satisfying the initial conditions: ¢(0)=0,¢'(0) =1.

7. Find the Fourier transform of a function f if f(x)=¢(x) for Xe[—l, O]
and f(x)=0 for x¢[-1,0], where ¢ is a solution of the differential equation
" —¢' =0, satisfying the initial conditions: ¢(0) =1, ¢'(0)=0.

6. Find the convolution f *¢ of the given functions:

1. f(X)=x, p(x)=¢".

2. f(x)=sinx, ¢(x)=chx.

3. () =X, o(x)=x°.

" f(x)={e:’ x>0, (p(x):{l, x>0,

, x<0, 0, x<O.
L x>0 1, x>0
5. f()=41+x2" (/’(X):{O’ x;O,
0, x<0, ' '

0, x=0, 1, x>0,

) {ezx, x <0, #(x) {O, x <0.

7. Determine whether the given equality defines a generalized function
fe(C?(R):

L (f;9)=2¢'(D).

2. (f:90)=2¢'1) +9(0).

3. (f;9) =) +1.
4. (f:0)=9°(0).
5. (f;¢p) =",

1
6. (;9) = (p(x) +1ox.
0
7. (f;9) =j‘¢(x +1)dx.
0
1
8. () =[p(x*)dx.
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9. (f:0) =" (X)dx.
0

10. (f;0) = [p(e*)dx.
0

1
11. (f;9) = [e*®dx.
0

8. Using the definition of the generalized derivative, prove the following
formulas:

1. (x3) =2x.
2. (") =¢".
3. (sinx)' =cosx.

4. (cosx)' =—sinx.

5. (x*)' =3x%.

6. (sin2x)'=2c0s2X.
7. (cos2x)" =—2sin 2X.
8. (x*) =4x3.

9. (e) =2e*.

10. (™)' =—4e™.
11. (e°*) =5¢e°*.

. Find the derivative of the given generalized function:
. F(xX)=06(x)sin2x.

9
1

2. f(x)=0"(x)cos’ x.
3. f(x)=0(x)e™.

4. F(x)=5(x)e” .

5. f(x)=5(x)e™" .

6. (f;9)=[p(x)dx.
0

7. (f;9) =Jl'(p(x)sin xdx .
0
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8. (f;p) =j'go(x)cosxdx :
0

9. (f;p)= j‘go(x) cos x2dx..
0

10. (f:¢) :Jl.go(x)e‘xzdx.
0

10. Determine whether a function u is harmonic:
1 u=x%-y2.

2. u=x%+y2.

3.u=x'y+xyt.

4. u=x*"+xy?.

5. u=e*cosy.
2 2
X —

6. u=—; y2_
X* 4y

7. U =£In(x2 +y?).
2
8. u=e*siny.

X
9. u=arccos—.

Ly

X

11. Determine whether a function w is subharmonic:
.w=e* +e?.
o w=3x"+4y°.

W= (XZ + y2)3/2 ]

10. u =arctg

cw=x*+2x3y2 vt

cw=xt 233y 4yt 4 yte®,

1
2
3
4
5. w=x*+y?+e*cosy.
6
7. w=In(x? + y?) +e*.
8

cw=x2+y?+x%.
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9. w=e*cosy+x*.
10. w=e*siny +y°.

4.20. Individual tasks.
1. Find the order of an entire function and determine whether it has a finite

type:

1. f(z)= H[ —ij

k3

2. f(z)=2%""] (1 e kj

3. f(2)= ﬁ( J
k=1
4. f(Z)_Z e—Zz +z+2ﬁ[ Z j

5. f(z):ezﬁ(l—;j

il kInZ2(L+k)

6. f(z):ezﬁ(l—z}‘i.
k-1 k

7. f(z)_z]—[[l— 222]
kal o Kk
8. f(z) =% ﬁ(l—ij .

2
k-1 k

_ 1+10z+22* - z
9. f(z)=e H(l_e_‘ﬁ)

k=1

2
10. f(2)=(z-1°e 23| 1-—2 .
(2)=(z-De k_( ek

2
11. f(z2)= zH(l— v kj

k=2
12. 1(2) ﬁ[uikj
k=1 e
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14. £(2) =e2ﬁ(

k=1

z }} %
N
15. f(z):ezﬁ( _Lj

k=1

16, f(z):f{ izj

17. f (Z) _ el+102+2 Zef '
-1 2k

22

z
18. f(z :ez+322 5 1— Kin(L+k) 2k|n2(1+k).
@ 1 In(1+ k)

k=1

keN

19. f(z):eZHE(Z;Zj, A =K%, Ay =iKY2, A, = kY2,

2
gz =—1K"7.

20, f(z):zf[£1+k_zzj_

21, f(z)=¢ H(l—_j
k=1

22. f(2)= H(l_kﬂ kj

k=2

23, f(z):ezzﬁ(l—%j,

ke 2z 2
“ ”Z’Zﬂ(l‘(mj J

25, f(z):zﬁ(1+ 522].
k=1

ker

2. 1(2)- kno[u[@k 1’””
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27. t(2)=ze Zﬁ( z j
k= T

28, f(z):zzﬁ( ! J

k=1 4k 7"
(a+b)z
20. f(z)=(a—b)ze 2 [J 1+ % .
k=1 4k

o 72

30. f(z):H[l——zj.
k=1l K

2. Represent the entire function as an infinite product:

1. f(z)=e*—e*.

2. f(z)=cosz.

3. f(z)=sinz.

4. f(z)=shz.

5 f(z)=chz.

6. f(z)=¢-1.

7. f(2)=¢% -

8. f(z)=chz-cosz.

9. f(z)=e"".

10. f(2) =sin(z?).

11. f(z)=cosz .

sin(;r\ﬁ)

sm(;zz)

12. f(z)=

13, f(z)=
14. f(z)_5|n(7rz).
15. f(z)=e**".
16. f(2) =cos(zz).
17. f(z) =sinyz.
18. f(z) =cos(z?).
19. f(2)=sin(l-2z).
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20.

21.
22.
23.
24.

25.

26.

27.
28.
29.

30.

f)=3N2
YA

sinyz

f(z)= N

f(z) =€ —¢®.

f (z2) =cos(zz) —cos(za) .

f(z)=e” +e¥t,
cosz—cosa

)= osa

f(z) =sin(z—a)+sina.

f(z)=e*t—e”.

f(2) =sh(z +1).

f(z)=ch(z-1).

sin(zz)

fl)==">.
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