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A propose a new functional-discrete method for solving nonlinear differential equations. The method possesses

the exponential convergence rate and can provide two-sided approximations. The user can control the exponential

convergence through an embedded control mechanism.

1. Introduction

In the paper a control mechanism which
guarantees the exponential convergence is developed
for a wide class of nonlinearities independent of the
generalized Lipschitz constant L (i.e. global). The
idea of such approach for eigenvalue problems was
recently announced in [20, 17].

Let us remind of the idea of Adomian decomposi-
tion method (ADM) [2] which can be also interpreted
as the FD-method proposed in [19] for the Sturm-
Liouville problems and is very close to the homotopy
perturbation methods.

If we have to solve the operator equation

~3%

=—N(a) + F, (1)
then we can imbed it into the family of equations
u(t) = —tN(u(t))+ F, t€][0,]1]

and obtain obviously u(1) = .
We look for the solution of (2) in the form

u(t) = Z tju(j),
j=0

and represent
N(Y tuD)y =3 "t14;,
=0 =0

where

LOIN(Y 2, thulk)

7! oti

j:

Substituting (3) into (1) we have
> tul) = —tN(Y tu)) + F. (6)
=0 5=0

Applying to this equality successively the operator
L_ @27 and then setting ¢ = 0 we obtain the

G+D)! deitT
following recurrence formulas

wlt) = —A; (N;u(o), .. .,u(j)) ,
Ag (N;u(o)) =N (u(o)) ,

7=0,1,...
u® = F
(7)

Axmyasvni npobaemu Gi3uKu, MaAMeMamMury mMa iHGOPMAMUKY.

Here A; (N;u®,...,ul9)) are the Adomian poly-
nomials with the following explicit representation

Aj (N;u(o), e ,u(-j)) =

=Y NED ()
o1+t =j
(D) %5=1705 ()%

()t
where the sequence of indices natural «; is not
increasing, N9 (u) is the i—th (Fréchet) derivative
of the operator N.

The solution of (1) can be now represented by
(provided that the convergence radius of series (3) is
not less then 1)

u=1u(l)= Zu(j)
=0
and the truncated sum

m_ i 0

J=0

(uu))aﬁaz

(o —az)!

X oeee (8)

- X

(ej—1—ay)!

(9)

(10)

represents an approximation to the exact solution.
The following theorem from [1] gives some suffi-

cient conditions for the convergence of (3) for all

t €10,1].

Theorem 1. Let H be a Banach space and F' € H.

If the operator N(u) : H — H is analytic in a ball

|lu — up|| < R with the center ug and if for all n > 0

there holds ||N™ (ug)|| < n!Ma™ with some M > 0,

o > 0, then the conditions

1. 4Ma < 1, for R = oo,

2. bMa <1, for R < c.

provide the convergence of (3) for all ¢ € [0, 1] and,

therefore, the convergence of (9).

2. Application to parabolic problems
We consider the problem
Ou(t)
ot

+ Au(t) = f(t,u(t)),
u(0) = uo,

t € (0,1], (11)

where u(t) is an unknown vector valued function wi-
th values in a Banach space X, up € X is a given
vector, f(t,u) : (Py x X) — X is a given function
(nonlinear operator) and A is a linear densely defi-
ned closed operator with the domain D(A) acting
in X. The abstract setting (11) covers many applied

M3, 2011



26

Lazurchak I.1.

problems such as nonlinear heat conduction or diffusi-
on in porous media, the flow of electrons and holes
in semiconductors, nerve axon equations, chemically
reacting systems, equations of the population geneti-
cs theory, dynamics of nuclear reactors etc. This
fact together with theoretical interest are important
reasons to study efficient discrete approximations of
problem (11).

A simple example of a partial differential equation
covered by the abstract setting (11) is the nonlinear
heat equation

Q%u(t, x)

ou(t, ) B
ot - o2 —f(t,x,u)
with the initial condition u(0,z) = uo(x), where the
operator A is defined by
D(A) = {v e H*0,1): v(0) = 0,v(1) = 0},

2 (13)
d for all v € D(A).

(12)

Given a discretization parameter N we are interesti-

ng in approximations possessing an exponential

convergence rate with respect to N — oo which for a

given tolerance € provide algorithms of optimal or low

complexity [10]. Exponentially convergent algorithms

were proposed recently for various linear problems.
The homogeneous equation

dT(t)

o7 + AT(t) =0,
where I is the identity operator and T'(t) is an
operator valued function defines the semi-group of
bounded operators T(t) = e~“4! generated by A (
called also the operator exponential or the solution
operator of the homogeneous equation (11)). Given
the solution operator, the initial vector ug and the
right-hand side f(t), the solution of the homogeneous
initial value problem (11) can be represented by

T(0) = I, (14)

u(t) = up(t) = T(t)ug = e Atuy. (15)

Problem (11) is equivalent to the nonlinear Volterra
integral equation

u(t) = up(t) + un(t),
where wup(t) = T(t)ug and
T(t) = e A

(16)

is the operator exponential (the semi-group )
generated by A and the nonlinear term is given by

U (%) :/0 e~ A=) (s, u(s))ds. (17)

The equation (16) is of the type (1) with u = u(t) =
u(t,x), wug = ug(x)

Axmyasvhni npobaemu Hizuku, Mamemamuru ma iHGOPMAMUKY.

Let A be a densely defined strongly positive (sectori-
al) operator in a Banach space X with the domain
D(A), i.e. its spectrum X (A) lies in the sector

E:{Z:ao—F’f’BiH: TG[0,00), |6|<§0<g} (19)

and on its boundary I's and outside the sector the
following estimate for the resolvent holds true

M
1+ 2|

I(zI = A)~H] < (20)

with some positive constant M (compare with [18]).
The angle ¢ is called the spectral angle of the
operator A. A practically important example of
strongly positive operators in X = L,(2), 0 < p <
oo represents a strongly elliptic partial differential
operator [5, 9, 6] where the parameters ag, ¢ of the
sector X are defined by its coefficients.

A convenient representation of the operator
exponential is the one provided by the improper
Dunford-Cauchy integral

—At _ 1

e —/ e (2] — A)"ldz (21)
I'r

T 2w

where I'; is an integration path enveloping the
spectrum of A. After parametrizing I' we get an
improper integral of the type

e =L [e (2] — A)"ldz =
I'r

- [ T -

The last integral can be discretized by a quadrature
rule (desirable exponentially convergent) involving a
short sum of resolvents. Such an algorithm inheri-
ts a two-level parallelism with respect to both the
computation of resolvents and the treatment of di-
fferent time values.

Two efficient methods for solving linear
homogeneous parabolic problems based on the
improper Dunford-Cauchy integrals along a path
enveloping the spectrum of A were discussed in
[6, 10, 12] where the boundary of a sector contai-
ning the spectrum of A or a parabola were used
as the integration path. The methods from [6] use
Sinc-quadratures [23] and possesse the exponenti-
al convergence rates for ¢ > 0 and a polynomi-
al convergence rates for ¢ = 0 depending on the
smoothness of the initial vector ug from a Hilbert
space. An exponential convergence rate for all ¢ > 0
was proved in [7] under assumptions that the ini-
tial function ug belongs to the domain of D(A?)
for some o > 1, where the preliminary computati-
on of A%ug is needed. Note that all these algori-
thms can not be directly applied to inhomogeneous
problems due to the inefficiency of computation of
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the operator exponential at ¢ = 0. A hyperbola was
used as the integration path which allows one to
get the uniform exponential convergence rate with
respect to ¢ > 0 without preliminary computation
of A%ug. An exponentially convergent algorithm for
the case of an operator family A(¢) depending on
the parameter ¢ was proposed in [11]. This algori-
thm uses an exponentially convergent algorithm for
the operator exponential generating by a constant
operator.
We can also use the representation

e Ay = i e #t {(z[ — A - l]] updz
2mi Jp, z
(23)
instead of (22), where the integration hyperbola is
given by

Ty ={z(§) = arcosh& —ibysinh ¢ : € € (—o0,00)}
(24)
(note that the hyperbola

Iy = {2(¢) = ag cosh & — ibysinh & : & € (—o0, 00),
(25)
by = aptan p}

is called the spectral hyperbola, which pathes
through the vertex (ag,0) of the spectral angle and
possesses asymptotes which are parallel to the rays
of the spectral angle ¥).

Parametrizing integral (23) by (24) we get

uarzggffsﬂm@@ (26)
with
ﬁ(t, f) = FA(tv g)an (27)

Fat,€) = e O (asinh & — iby cosh §)-

Jetor-a - o).

We approximate integral (26) by the following
Sinc-quadrature

h M

= omi

F(t, 2(kh))
k=—M

upr(t) (28)

with an appropriate h. The following result from
characterizes the error of this approximation.

Theorem 2. Let A be a densely defined strongly
positive operator and ug € D(A%), a € (0,1),
then Sinc-quadrature (28) represents an approximate
solution of the homogeneous initial value problem, i.e.
u(t) = e~ g, and possesses a uniform with respect
to t > 0 exponential convergence rate with an esti-
mate which is of the order O(e=¢V™) uniformly in
t > 0 provided that h = O(1/v/M) and of the order
O (max {efﬂdM/(cl lnM), 6701a1tM/27c1a1nM for

each fixed ¢t > 0 provided that h = (¢; In M)/M.

Axmyasvni npobaemu Gi3uKu, MaAmMeMamMury Mma iHGOPMAMUKY.

In accordance with (7) for the computation of
Adomian’s polynomials one should compute first
t

AQ(N; UO) = N(t, UO) = /G_A(t_T)f(T, UQ(T))dT

0
(29)
and then one after another

t
]VOL1 (t, Uo) = /eiA(tiT)MdT.

Ty (30)

0

Using representation (23) of the operator exponential
we get, e.g. for N(¢,ug)

N(t,UO) = —X

211

X /t/e—2<t—8> [(z[ —A) - %1} f(s,uo(s))dzds =

0TIy
I P
= I m[(@” 4) 4@4X

% /t e—z(f)(t—s>f(s, uo(s))dsz’ (€)dE,
0

2(€) = aycosh & — iby sinh €.
Replacing here the first integral by quadrature (28)
we get

(31)

]’L M
up(t) = () = o= S L(kR)x (32)
271 Nt
x @@MI—Arl—;émﬂfuw,k_rMim

with fe(t) = fot e~ #BN)(t=9) £ (5 ug(s))ds.

In order to construct an exponentially convergent
quadrature for these integrals we change the variables
by

% —s= %tanhf (33)
and get instead of
a0 = [ Feod, (34
where
Fr(t,€) = exp[—z(kh)t(1 + tanh &) /2] x (35)

X 20027}12510(16(1 —tanh§)/2,uo(t(1 — tanh §)/2)).

The following assertion was proveu.

Lemma 1. Let f(t, ug(t)) for ¢ € [0,00] can be
analytically extended into the sector X, = {pei¥r .
p € [0,00], |61] < ¢} and for all complex w € Xy we
have

1 (w, uo(w)) || < e (36)

with 6 € (0,v/2ap] , then the integrand % (t,£) can
be analytically extended into the strip Dg,, 0 < d; <
©/2 and belongs to the Hardy class H'(Dg,) with
respect to &, where ag, ¢ are the spectral characteri-
zations (19) of A.
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Let the assumptions of Lemma 1 hold, then we can
use the following quadrature rule to compute the
integrals (34).

M
Fu®) = frar(®) =h Y pp(t)fwp(t)),  (37)
p=—M

where
pp(t) = %exp{—%z(kh)[l + tanh (ph)]}/ cosh? (ph),

wp(t) = 21~ tanh (ph)], h = O(1/VAT),

2(€) = ay cosh & — iby sinh &.
(38)

Substituting (37) into (32) we get the following
algorithm to compute an approach Ag a(N;ug) to
Ao(N;up)

AO,M(N; UO) = Aap,M(t) =
h M
= 2 (kh) [(z(kh)] —A)t-

T om

k=M (39)

1 M
|t X Ol ),
p=—M

The next theorem characterizes the error of this
algorithm.

Theorem 3. Let A be a densely defined strongly
positive operator with the spectral characterization
ag, ¢ and f(t,uop(t)) € D(A%), a > 0 for ¢t € [0, o0]
can be analytically extended into the sector ¥ =
{pe?®: p € 0,00], |01] < p} where the estimate

1A% f (w, uo(w))|| < cae™®F w e s, (40)

with 8, € (0,v/2a0] holds, then algorithm (39)
converges with the error estimate

leEar (@l = | Ao(N;u0) () = Aoar (1)) < ce™ VM
(41)
uniformly in ¢ with positive constants ¢, ¢; depending
on «, ¢, ag and independent of M.

In this way one can compute all Adomian’s polynomi-
als needed in (10) with an exponential accuracy.

Let the nonlinear operator f(s,u) for each s is
analytic as function of u in some disc [|[u—ugl| = p < r
with the boundary T, then it holds

|£5 (s, u0)| < M (s, p)nlp™ < M(p)nlp",  (42)
provided that M(s,p) < M(p), where M(s,p) =
max I/ (s,u)||- Thus, for M(p) small enough we are
ue

in the situation of Theorem 1, so that the method
(10) converges exponentially.

An alternative exponentially convergent method
based on the interpolation of the nonlinearity on a
Gauss-Lobatto grid was proposed in [13].

Axmyasvhni npobaemu Hizuku, Mamemamuru ma iHGOPMAMUKY.

One can obtain an operator equation of type
(1) applying to PDE (11) the operator L;' = fot
analogously to [4, 21] but there are not any theoreti-
cal justification of convergence of Adomian’s method
in this case.

Remark 1. In the recent paper [8] the following
modification of ADM was proposed. One looks the
summands of (9) in accordance with the recurrence
formulas

W) = T (), u ) a0

W =F j=01,... (43)

where A (u@,u®, ... ,ul9)) are the modified
Adomian polynomials given by

A, (u<0),u<1>, . ,u(j)> _ (44)

=N (u(o) —l—...—i—u(j)) - N (u(o) —I—...—i—u(j_l)).

In the paper [8] for the problem

o TS y(t) = (1), te (0, T),
diif,t) p, P=0,k—1,

with the given ¢, p =0,k — 1, with

M= t
e 1B(t)]

and with the right-hand side f(y) satisfying the Li-
pschitz condition with a constant L it was shown
that the modified Adomian methods converges as a
geometrical progression with the quotient a and with
the error estimate

m am
O =D 0] < Tl 43)
§=0
provided that
LMT*

Numerical experiments have shown that the modified
ADM converges faster then the ordinary one. But it
was ignored in [8] that the modified ADM in fact coi-
ncides with the usual fixed point iteration. Actually,
the relations (43), (44) imply

umtl = —N@w™)+F, m=0,1,...
u =F. ) (47)
Now the conclusions of [8] about the advantages of
the modified ADM become understandable and are
well known long ago (see e.g. [22]).
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The natural question arises in the case when the
assumptions of Theorem 1 are not fulfilled: what can
we do in order to arrive the convergence? One of the
aims of this paper is to answer this question and
to construct an iteration method which converges
whereas the fixed point iteration (47) can be di-
vergent. An other aim is to show that the odd and the
even iterations provide the two-sided approximations,
therefore they can be used e.g. for aposteriori error
estimates.

3. Two-sided iteration method

Let S,.(a) = {r € X: ||z —al <7} be a closed
ball in a Banach space X. Then the following asserti-
on about the fixed point iteration for equation (1)
holds true (see e.g. [16]).
Theorem 4. Let the operator N satisfies the condi-
tions

1° Vu,v € S,(a) it holds

IN(u) = N@)|| < gqllu—vl, qe€0;1),
2° for F' € S,(a) it holds ||N(F)|| < (1—q)r.
Then the equation
u=—N(u)+F, N(0)= (48)

possesses a unique solution u, € S,(a), which can be
obtained by the fixed point iteration

Unt1 = —N(up)+F, n=0,1,... (49)
with the error estimate
qr
* n < .
e =l < 15

Let us clarify the conditions on the operator N
under which the iterations (49) provide the two-sided
approximations to .

Let K C X be a cone with a partial order =<, i.e.
we write v =< u when v —v € K. Further we make the
following assumptions.

3° FekK.

4° The operator N is positive in the sense that
N(K)CK
5° There exists the Frechét derivative N'(v) with the
property

IN'(0)| < ¢, 02X N'(v)u VYu,ve S (F)NK

60
Ojulz—

4. An iteration method for nonlinear problems
with the controllable exponential convergence

In this section we give the description of an algori-
thm with the controllable exponential convergence.

Axmyasvni npobaemu Gi3uKu, MaAmMemMamMury ma iHGOPMAMUKY.

Then the following assertion holds true.

Theorem 5. Let the conditions 2°-6° hold. Then
the fixed point iteration (49) converges to the uni-
que solution u, of the equation (48) and provide the
two-sided approximation, i.e.

Ue X oo X ugp XL
up Jug =X ... R Ugkpl 2.

S uz 2ug

<, (50)

Let us consider the Dirichlet boundary value
problem

u'(z) = Mu?(z) = —f(x), x€(0; 1),
u(0) =u(l) =0, (51)
with f(x sintz + M(sin7z)® and a given

) =
constant M >0 The exact solution of (51) is

u(z) = sinrz. (52)

Problem (51) is equivalent to the following nonlinear
Fredholm integral equation

u(x) = [ Gz, )[=Mu?(&) + f(&)]de,

{ <¢
1—ac §<x

This equation is of the form (48) with

w=u [

[ Gaorei

O%»—I

(53)

§)ds,

For M =1, r =12, ¢ =0.54 all assumption of
Theorem 5 are fulfilled where
X =C[0; 1], K = {v(x) € C[0; 1] : v(z) = 0,z € [0; 1]}
|F|loo = 1.087... <7
IN(F) (1—q)r,

— Flloo =0.101... <
1
(©u(é)d¢ <
< % — 3*18.447, = g,

1
ulz—N(uO)+F:—{G(x£f£)d£+f(x)>0

0< Nv)u= 3bfG(x,§)v2

The numerical results (obtained with Maple) are
presented in Table 6. The table exhibits the
advantages of the fixed point iteration to the usual
Adomian’s method.

In order to avoid technical difficulties we justify this
algorithm in the case of the following nonlinear model
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€A

EmA

.4477593957331e-1
.6148944791993e-2
11450676484 3e-2
.246398359542¢-3
.5768833894e-4
.1427355199e-4
.3671925821e-5
.972342751e-6

N OO W~ O3

.394026825275758e-1
473705632178769e-2
.544572291857201e-3
.629246333480784e-4
.726644599750120e-5
.839176371831571e-6
.969127578152334e-7
.111920351333820e-7

Tabui. 1. Error of the usual (¢4

€ (0,1), (54)

with a nonlinear function N(u) : R! — R! satisfying
the conditions

Yuc R

(55)
Using the Green function for the differential operator
defined by

N(u) >0, [uN(@)] >0, N"(u)=>=0,

D(A) = {u:u e Wi0,1) : u(0) = u(1)},
Au = — j 5 Vu € D(A)

one can reduce problem (54) to the operator equati-
on of kind (1). In the case when the fixed point
iteration (47) is divergent we propose the following
method based on the idea of the FD-method [20] whi-
ch is closed to a homotopy perturbation method. We
introduce a grid

5:{1‘16

partitioning the interval [0, 1] into subintervals

[€i—1, 2;],1 =1, K of the length h; = x;—x;_1, |h| =

max h; and imbed problem into the parametric fami-
1

0,1, i=T,K: 0=a1 <...<xxg =1}

ly of problems

0u(z,t)

92 {N(U(!Ei—l, t)) +t[N(u(z,t))—

—N(u(z;i—1,t))] }u(x,t) = —f(z),z € (0, 1),
au(a)

[U(x)]wzmi ) |: dz :|I_wi 5 (3 5 )

u(0,t) =u(1,t) =0, te][0, 1].

It is clear that for ¢ = 1 the solution of problem (6)
coincides with the solution of problem, i.e.

u(z, 1) = u(z),

Axmyansvhni npobaemu Hizuku, MmMamemamuru ma iHGOPMAMUKY.

) and the modified (en4) Adomian’s method for M = 0.5.

For t = 0 we obtain the following base problem

d?u(® ()
dx?
x € (Ti—1, ®i),

0 (@), = 0, [d“(o) “’L_m _o,

- N (u(O) (%4)) U(O)(x)
i=1K,

_f(x)v

(56)

dx
i=1,K —1,
u®(0) = u®(1) = 0,

where [v(z)]g=¢ = v(§ + 0) — v(§ — 0) denotes the
jump of the function v(x) at the point x = &.

The last problem as well as problem (6) are
representatives of the class of boundary value
problems with piecewise constant argument which are
in the focus of attention of many researchers for some
time (see e.g. [3] and the literature therein).

We look for the solution of problem (6) in the

form
t) = thu(j)(x)
=0

Substituting (57) into (6) and comparing the coeffi-
cients in front of powers of ¢ we obtain the following
recurrence sequence of problems for u¥)(z) (with pi-
ecewise constant argument):

(57)

d?uUtD (z)

= (58)

= N (O (@) u D () =

=N’ (u(o)(xi,1)> wIt (2, )uO(z) + FUH (z),

{L‘E(Jii_l,l‘i), izl,K,
where
F(j“)(x) —
J .
=3 Ajirp (N uO(zioq), .. uU TP (1)) x
u(p)( )+Z|: j— p( u(o ._7u(j_p)x)_

—Aj—p (N u( (Ti-1),-- P )]u(p) (z)+
A1 (N;uO (i), umm 100 z),
[U(J+1)( )]ac z; = 0,

0, i=1,K—1,

duU+Y ()
{ dx LC_IL
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u(j+1)(0) _ u(j+1)(1) =0, j=0,1,...,

Aj(N;vo,v1,...,v;) are Adomian’s polynomials for
the nonlinear function N(v) given by the explicit
formula (8). The solution of problem is then given
by

u(@) = > u(z) (59)
j=0

(provided that the convergence radius of (57) is not
less then 1) and the approximate solution by

(60)

where the exponential convergence will be controlled
by the parameter |h|.

Let us consider the base problem (56). This
problem is equivalent to the system of nonlinear
equations

1
W) = [ 6 (w6 Nw) fde, i=TE-T,
0 (61)
where ﬁ(u) = (N (u(z1)),....N (u®(zg_1)))
and G (xi,f,ﬁ> is the Green function of problem
(56) provided that the vector
U = {u®(z1), u® (23), ..., u" (£ _1)}

is known.
We introduce the operator

1 K—1
(@) = | [ 6 (o6 Nw) e (62
0 i=1
which is continuous on a closed ball § =
{7 eRE W osoon =  max  |ul®(z;)] < r}
1<i<K—1

with r defined by || f[|o,00,0,1] and translate the ball S
into itself. Therefore, by Brower’s fixed point theorem
(see e.g. [15] ) there exists a fixed point of this
operator in S, i.e. the system of equations (61) is
solvable.

Remark 2. The fixed point iteration for equation
(61) is equivalent to the solution of sequence of the
following problems

d2u(0),n+1 ($)
dx?

=N (@ i) u @ (@) = — f(a),
IE(Iifl, l‘i), =1, K

uwOnt(0) = O+ 1(1) =0, n=0,1,...,
(63)

is an arbitrary

where W = (u®: ()

i)i=T.K
vector from the ball S. For this problem there exi-
sts the following exact difference scheme [24]

(a™(z)uO " (z;)z)  — d™(w)u " (a) =
:—(pn(l'l), i:17K7

(64)

Axmyasvni npobaemu Gi3uKu, MaAMeMamMury mMa iHGOPMAMUKY.

U(O)’n+l(0) _ U(O)’n+l(1) _ O,
with .
sinh(y/ph;)
a"(zi) = | ———=—|
hi/ 145
i =N (" @in))
i il i it1hi
Vi tanh Vi LV VR 7
h; 2 h; 2
~hithipg
==

dar (LL'Z) =

h;

2

1 o dWOZé(J,'l)
e [Fad

" (@) = .

a=1

+(=1) Wi () VHi—14a cOth /ity hi—1+a] )

where Wi(r), «=1,2 are solutions of the followi-
ng two Cauchy problems

2 J T .
VLD N (uOn () Wi (2) = — f(a),
Tj—24a < T < Tj—1+a;

AW ()

. 65
Wi(xﬂ(—l)a): dx (6

r=x;+(—1)> -
a=1,2.

)

In order to compute the coefficients of the exact di-
fference scheme for one iteration step one should solve
2(K —1) Cauchy problems by an IVP-solver, each on
a small interval with the length of the corresponding
step-size. Then the difference scheme with a tridi-
agonal matrix can be solved by the special eliminati-
on method (method of chasing, method “progonki”)
which in our case is stable. Analogously to the multi-
ple shooting method this system of equations can
be written down in the form s = F(s) where s =
(sgl),sl,sél),...,sK_l,s(Iill,s(Ii))T and F'(s) for an
arbitrary s can be calculated using an IVP-solver.
From the discussion above it follows that the fixed
point iteration

converges provided that $ was chosen within the
corresponding ball.

Let us rewrite the equations (58) in the form

A2+ .
PO _ auit) a) =
= V' (4 i) O () )~

. 66
_ u(a+1)(x)u(0) (z5_1)]+ (66)
+ FUtO(2), ze(zi_1,2), i=1K,
wOtD(0) =) =0, j=0,1,...

with

q(z) =N (U(O)(xi—l)) + N’ (U(O)(Ii—l)) u® (1),
1‘6[1‘1',1,1‘1'), 1=1, K.

)

(67)
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Given u®(z;),i = 1,..,K — 1, let G(z,&,q(-))
be the Green function corresponding to the operator
on the left side of (66) with the Dirichlet boundary
conditions. Then problem (66) can be performed to

u(]+1

Z f G xwf q())

p= 1$p 1
& qul+D
x [ R dnu ) (€)dEN” (u®) (2-1)) —

Tp—1

K Zp § (0) .
-3 [ G@n&a() [ PGRdnut ) (€)dex

p=lx,_1 Tp—1
1
XN’ (w9 (2, 1)) = [ G (2:,€, () FUHD (€)de,
0
i=1K.

(68)
In order to estimate u(ﬂ“) (z) we need to estimate the
Green function G (x,&,q(+)), which can be explicitly
represented by the formula

1 v (z)v2(§),
| (@) (a),

Here vy(x), a =1,2 are the so called stencil functi-
ons which satisfy the equations

r <&,
G (zi,8,q()) = (69)

£ <.

d2
ﬁva(x) —q(z)va(x) =0, O<z<l, a=12,
(70)
0(0) =0, W}(0)=1, w(1)=0, w(1)=-1
as well as the continuity conditions
[Ua(x)]m:mi = 07 [/U/OL(‘/L.)]fzmi = 0’ o= 1’ 27
(71)

i1=1,K—1.
These functions possess the following properties:

1° wi(x) is a non decreasing, non negative function
on [0, 1],

2° wy(z) is non increasing, non negative function on
[0, 1,

3° ’Ul(l) = ’UQ(O),

47 vi(z)vz(x) — vi(z)vy(z) = 02(1) = v2(0),

These properties as well as the maximum principal

imply the estimates

767 0)7

(72)

0< Glr,.9() < Gl
| <1

8Gw£q())’

Using (72) as well as the assumptions we obtain from
(68)

0,11 %

HU(- 0,1 & |h|HU
< N’ (Hu(o Hl,oo,[0,1]> ||u(J+1)||1’oo’[0’”+

,[0,1]

(73)

Axmyansvhni npobaemu Hizuku, MmMamemamuru ma iHGOPMAMUKY.

For |h| small enough this inequality can be
transformed to

HU(H )Hl 00,[0,1] & ClHF(]+ ||1 ,[0,1] (74)
with
e = [1= Bl oo, 0,0 (161 00 0,11 ) |
(75)
and the norms
||UH0,oo,[0,1] = Ifél[%ﬁ] lv(z)],
[0]11,00,0,1] = max{ Joax fu(z)], max v ()]}

Further we will need the following two auxiliary
statements.

Lemma 2. Let N( ) be represented by the power
series N(u) = Z a; > 0 and u®(z) €
clpo, 1, p

=0, 1 , then

Ak (N (w);u® (@), u® () -
_Ak( ( ) U(O)(xifl)""7u(k)(xi71))||oo <

<2k Y dai Ay (N(u); [[ul®

||u(k)Hl,oo,[O,1]) =

,[0,1]»

Hu(l) Hl,oo,[0,1]7 ceey
=[] Ay (N (w); 41 00, 10,115
Hu(l)Hl,oo,[o,l], ) ||u(k)Hl,oo,[O,1]) .

Since the Adomian polynomials are linear operators
with respect to the first argument (see (8)), i.e.

Ay (N(u); uO(z), ..., u® (x)) =

= i a; Ay (u%; uO(z),...,u® (x))

i=1
it is sufficient to consider the case N(u) = u?® only.
For this case we have
Ay (u2 uO(z),...,u® (x)) =
w@ ()] 12
= Z N(Oél) (U(O)(.’IJ)) % X ... X
ar1+...tapg=~k ! 2
[u(k—l)(m)]ak—lfak [u(k)(f)]o‘k .
(ak,l—ak)! (Oék)! -
= > 20(2i—1)...(2i —an + 1)x
ar+...+ar=k o
2i—ay [u® (x)]1 T2
x [u®(z)] 1 [ @] " (al_]az)! X ... X

[u(k—l) (m)]o‘k—lfo‘k [u(k) ($)]°‘k

(ag—1—ag)! (o)
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| Ak (u?; uO(z),...,uP(2)) - or
—Ap (u?, 0O (z;21), . uP (220)) | < j

al1+...tag=~k p=1
X(2i—a14+a1 —ag+ ...+ ag_1 —ap + ag)X J

Viti-p) Vp + 2 Aj—p(N'(w)u; Vo, ..., Viep) Vpt
||| 2= S PR il " L x
. D11,()0,[0,1] (ap—a2)! " (ak—l—ak)! + G+D! dz7 T N( Z z ‘/S) .

y flut )Hl,koo,[(),l] |h| = s=0 2=0

—an)! | = (80)

= 2i|h| Ak (u?; ||u(0)||1,oo,[0,1]7 ceey ||u(k)||1,oo,[0,l]) =

= || A ([u*];

The lemma, is proven.

||u(k)

J10.1])-

,[0,1]5 -+ -5

Lemma 3. Let N(u) be represented by the power
series N(u) = 372 aju® then

Aj+1(N(u); Vo, N

dit1
|

with f(2) = > 27V},
=0

+V5,0) X (76)

i=0,1,....

Returning to (74) and taking into account we obtain

nw“m,<q§:&ﬂp

||U( )||1 ,00,[0,1]

. HU Joa) lu'? 0,17+
+h A u©®
Z j— p ” ”1 ,[0,1]» (77)
w7~ p)Hl [0, 1])Hu(p)Hloo[0 11+

1 Tt
G+1)! {dzJH( ZzS”US)Hloo[m])

- Z 2w |1, 00,0,y N (! ”17007[07”))} z:o}

s=1
Introducing in (77) the new variables by

A1~ P 1,00 = 5, (78)

then changing v; to V; and the inequality sign to
the equality one we arrive at the following system of
equations

j
Visn=a {Z Ajrrp (N(w); Vo, -, Vig1—p) Vp +
p=1

j
+3 A (N () Vo, .., Vi) Vet

p=0

1 ditt s ,

* (j+1) 'dza+1( Zz Vs ) . —VinaN' (V)
j:Oa17"'7 Vo =vo = ||U( )”l,oo,[O,I]

(79)

Axmyasvni npobaemu Gi3uKu, MaAmMemMamMury ma iHGOPMAMUKY.

The solution of this system is a majorant for the
solution of (77),i.e.v; <V}, j=0,1,.... Using the
method of generating functions we obtain from (80)

f(2) = Vo = oy {1F(2) = Vol IN(f(2))—

(81)
—N(Vo)] +2f*(2)N'(f(2)) + N(f(2)) = N(Vo) } -

From this equation we can express z as a function of f

2= 7 { (£ - N+ VW) (7 - Vo)-
=N(f)+N(Vo)},
Vo < f, C:ﬁl\lﬂ(%)’

(82)
and then find f,,, for which z arrives its maximum
zm = R. The condition

|h[Vo [N (V)]

guarantees the existence of f,
assumption (83) we have

(83)

because under

z2(Vo) =0, fli_)m z2(f)=0
d , 1 , 1
df[ AN o= & N = - =

— [hl] ||U(O)||1,oo,[o,1}N/(HU ) Jj0,1) > 0.

The value z,, defines the convergence radius of seri-
es (81), i.e

1
G+
with an arbitrarily small positive €. Returning to the
old notations we have

RV, =C (84)

: C A
| u' ’[0’1]<W(§) , J=0,1,...,
(85)
which leads to the following sufficient convergence
condition for the series f(2) = > 27V;:
j=0
h
2 <. 86
‘ (56)

Thus, we have proved the following assertion.
Theorem 6. Under the assumptions of Lemma 2
the method (60) for problem (81) converges super-
exponentially (converges) with the error estimate

m h m+1
lu—w Hl,OO,[O,l] < (1+n€)1+5 ( 1/—RI2/R ) (87)
provided that
h <R, or (h=R). (88)
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